# Find the maximum element in the array other than Ai

Given an array arr[] of size N. The task is to find maximum element among N – 1 elements other than arr[i] for each i from 1 to N.

Examples:

Input: arr[] = {2, 5, 6, 1, 3}
Output: 6 6 5 6 6

Input: arr[] = {1, 2, 3}
Output: 3 3 2

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: An efficient approach is to make prefix and suffix array of maximum elements and find maximum element among N – 1 elements other than arr[i].

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find maximum element ` `// among (N - 1) elements other than ` `// a[i] for each i from 1 to N ` `int` `max_element(``int` `a[], ``int` `n) ` `{ ` `    ``// To store prefix max element ` `    ``int` `pre[n]; ` ` `  `    ``pre = a; ` `    ``for` `(``int` `i = 1; i < n; i++) ` `        ``pre[i] = max(pre[i - 1], a[i]); ` ` `  `    ``// To store suffix max element ` `    ``int` `suf[n]; ` ` `  `    ``suf[n - 1] = a[n - 1]; ` `    ``for` `(``int` `i = n - 2; i >= 0; i--) ` `        ``suf[i] = max(suf[i + 1], a[i]); ` ` `  `    ``// Find the maximum element ` `    ``// in the array other than a[i] ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``if` `(i == 0) ` `            ``cout << suf[i + 1] << ``" "``; ` ` `  `        ``else` `if` `(i == n - 1) ` `            ``cout << pre[i - 1] << ``" "``; ` ` `  `        ``else` `            ``cout << max(pre[i - 1], suf[i + 1]) << ``" "``; ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `a[] = { 2, 5, 6, 1, 3 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` ` `  `    ``max_element(a, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach ` `class` `GFG  ` `{ ` ` `  `// Function to find maximum element ` `// among (N - 1) elements other than ` `// a[i] for each i from 1 to N ` `static` `void` `max_element(``int` `a[], ``int` `n) ` `{ ` `    ``// To store prefix max element ` `    ``int` `[]pre = ``new` `int``[n]; ` ` `  `    ``pre[``0``] = a[``0``]; ` `    ``for` `(``int` `i = ``1``; i < n; i++) ` `        ``pre[i] = Math.max(pre[i - ``1``], a[i]); ` ` `  `    ``// To store suffix max element ` `    ``int` `[]suf = ``new` `int``[n]; ` ` `  `    ``suf[n - ``1``] = a[n - ``1``]; ` `    ``for` `(``int` `i = n - ``2``; i >= ``0``; i--) ` `        ``suf[i] = Math.max(suf[i + ``1``], a[i]); ` ` `  `    ``// Find the maximum element ` `    ``// in the array other than a[i] ` `    ``for` `(``int` `i = ``0``; i < n; i++)  ` `    ``{ ` `        ``if` `(i == ``0``) ` `            ``System.out.print(suf[i + ``1``] + ``" "``); ` ` `  `        ``else` `if` `(i == n - ``1``) ` `            ``System.out.print(pre[i - ``1``] + ``" "``); ` ` `  `        ``else` `            ``System.out.print(Math.max(pre[i - ``1``], ` `                              ``suf[i + ``1``]) + ``" "``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String []args)  ` `{ ` `    ``int` `a[] = { ``2``, ``5``, ``6``, ``1``, ``3` `}; ` `    ``int` `n = a.length; ` ` `  `    ``max_element(a, n); ` `} ` `} ` ` `  `// This code is contributed by Rajput-Ji `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to find maximum element  ` `# among (N - 1) elements other than  ` `# a[i] for each i from 1 to N  ` `def` `max_element(a, n) : ` ` `  `    ``# To store prefix max element  ` `    ``pre ``=` `[``0``] ``*` `n;  ` ` `  `    ``pre[``0``] ``=` `a[``0``];  ` `    ``for` `i ``in` `range``(``1``, n) :  ` `        ``pre[i] ``=` `max``(pre[i ``-` `1``], a[i]);  ` ` `  `    ``# To store suffix max element  ` `    ``suf ``=` `[``0``] ``*` `n;  ` ` `  `    ``suf[n ``-` `1``] ``=` `a[n ``-` `1``];  ` `    ``for` `i ``in` `range``(n ``-` `2``, ``-``1``, ``-``1``) : ` `        ``suf[i] ``=` `max``(suf[i ``+` `1``], a[i]);  ` ` `  `    ``# Find the maximum element  ` `    ``# in the array other than a[i]  ` `    ``for` `i ``in` `range``(n) : ` `        ``if` `(i ``=``=` `0``) : ` `            ``print``(suf[i ``+` `1``], end ``=` `" "``);  ` ` `  `        ``elif` `(i ``=``=` `n ``-` `1``) : ` `            ``print``(pre[i ``-` `1``], end ``=` `" "``);  ` ` `  `        ``else` `: ` `            ``print``(``max``(pre[i ``-` `1``],  ` `                      ``suf[i ``+` `1``]), end ``=` `" "``); ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``a ``=` `[ ``2``, ``5``, ``6``, ``1``, ``3` `];  ` `    ``n ``=` `len``(a);  ` ` `  `    ``max_element(a, n);  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach ` `using` `System;  ` ` `  `class` `GFG  ` `{ ` ` `  `// Function to find maximum element ` `// among (N - 1) elements other than ` `// a[i] for each i from 1 to N ` `static` `void` `max_element(``int` `[]a, ``int` `n) ` `{ ` `    ``// To store prefix max element ` `    ``int` `[]pre = ``new` `int``[n]; ` ` `  `    ``pre = a; ` `    ``for` `(``int` `i = 1; i < n; i++) ` `        ``pre[i] = Math.Max(pre[i - 1], a[i]); ` ` `  `    ``// To store suffix max element ` `    ``int` `[]suf = ``new` `int``[n]; ` ` `  `    ``suf[n - 1] = a[n - 1]; ` `    ``for` `(``int` `i = n - 2; i >= 0; i--) ` `        ``suf[i] = Math.Max(suf[i + 1], a[i]); ` ` `  `    ``// Find the maximum element ` `    ``// in the array other than a[i] ` `    ``for` `(``int` `i = 0; i < n; i++)  ` `    ``{ ` `        ``if` `(i == 0) ` `            ``Console.Write(suf[i + 1] + ``" "``); ` ` `  `        ``else` `if` `(i == n - 1) ` `            ``Console.Write(pre[i - 1] + ``" "``); ` ` `  `        ``else` `            ``Console.Write(Math.Max(pre[i - 1], ` `                           ``suf[i + 1]) + ``" "``); ` `    ``} ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main(String []args)  ` `{ ` `    ``int` `[]a = { 2, 5, 6, 1, 3 }; ` `    ``int` `n = a.Length; ` ` `  `    ``max_element(a, n); ` `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

Output:

```6 6 5 6 6
```

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up pawanasipugmailcom

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.