Given an array arr[] of size N, and integer K. The task is to find the longest subarray with the difference between adjacent elements as K.
Examples:
Input: arr[] = { 5, 5, 5, 10, 8, 6, 12, 13 }, K =1
Output: {12, 13}
Explanation: This is the longest subarray with difference between adjacents as 1.
Input: arr[] = {4, 6, 8, 9, 8, 12, 14, 17, 15}, K = 2
Output: {4, 6, 8}
Approach: Starting from the first element of the array, find the first valid sub-array and store its length and starting point. Then starting from the next element (the first element that wasn’t included in the first sub-array), find another valid sub-array and keep on updating the maximum length and start point. Repeat the process until all the valid sub-arrays have been found then print the maximum length sub-array.
Below is the implementation of the above approach.
C++
#include <bits/stdc++.h>
using namespace std;
void getMaxLengthSubarray( int arr[],
int N, int K)
{
int l = N;
int i = 0, maxlen = 0;
int max_len_start, max_len_end;
while (i < l) {
int j = i;
while (i + 1 < l
&& ( abs (arr[i]
- arr[i + 1]) == K)) {
i++;
}
int currLen = i - j + 1;
if (maxlen < currLen) {
maxlen = currLen;
max_len_start = j;
max_len_end = i;
}
if (j == i)
i++;
}
for ( int p = max_len_start;
p <= max_len_end; p++)
cout << arr[p] << " " ;
}
int main()
{
int arr[] = { 4, 6, 8, 9, 8, 12,
14, 17, 15 };
int K = 2;
int N = sizeof (arr) / sizeof (arr[0]);
getMaxLengthSubarray(arr, N, K);
return 0;
}
|
Java
import java.util.*;
public class GFG
{
static void getMaxLengthSubarray( int arr[],
int N, int K)
{
int l = N;
int i = 0 , maxlen = 0 ;
int max_len_start = 0 , max_len_end = 0 ;
while (i < l) {
int j = i;
while (i + 1 < l
&& (Math.abs(arr[i]
- arr[i + 1 ]) == K)) {
i++;
}
int currLen = i - j + 1 ;
if (maxlen < currLen) {
maxlen = currLen;
max_len_start = j;
max_len_end = i;
}
if (j == i)
i++;
}
for ( int p = max_len_start;
p <= max_len_end; p++)
System.out.print(arr[p] + " " );
}
public static void main(String args[])
{
int arr[] = { 4 , 6 , 8 , 9 , 8 , 12 ,
14 , 17 , 15 };
int K = 2 ;
int N = arr.length;
getMaxLengthSubarray(arr, N, K);
}
}
|
Python3
def getMaxLengthSubarray(arr, N, K) :
l = N
i = 0
maxlen = 0
while (i < l) :
j = i
while (i + 1 < l
and ( abs (arr[i]
- arr[i + 1 ]) = = K)) :
i + = 1
currLen = i - j + 1
if (maxlen < currLen) :
maxlen = currLen
max_len_start = j
max_len_end = i
if (j = = i) :
i + = 1
for p in range (max_len_start, max_len_end + 1 , 1 ) :
print (arr[p], end = " " )
arr = [ 4 , 6 , 8 , 9 , 8 , 12 ,
14 , 17 , 15 ]
K = 2
N = len (arr)
getMaxLengthSubarray(arr, N, K)
|
C#
using System;
class GFG
{
static void getMaxLengthSubarray( int []arr,
int N, int K)
{
int l = N;
int i = 0, maxlen = 0;
int max_len_start = 0, max_len_end = 0;
while (i < l) {
int j = i;
while (i + 1 < l
&& (Math.Abs(arr[i]
- arr[i + 1]) == K)) {
i++;
}
int currLen = i - j + 1;
if (maxlen < currLen) {
maxlen = currLen;
max_len_start = j;
max_len_end = i;
}
if (j == i)
i++;
}
for ( int p = max_len_start;
p <= max_len_end; p++)
Console.Write(arr[p] + " " );
}
public static void Main()
{
int []arr = { 4, 6, 8, 9, 8, 12,
14, 17, 15 };
int K = 2;
int N = arr.Length;
getMaxLengthSubarray(arr, N, K);
}
}
|
Javascript
<script>
function getMaxLengthSubarray(arr, N, K)
{
let l = N;
let i = 0, maxlen = 0;
let max_len_start, max_len_end;
while (i < l) {
let j = i;
while (i + 1 < l
&& (Math.abs(arr[i]
- arr[i + 1]) == K)) {
i++;
}
let currLen = i - j + 1;
if (maxlen < currLen) {
maxlen = currLen;
max_len_start = j;
max_len_end = i;
}
if (j == i)
i++;
}
for (let p = max_len_start;
p <= max_len_end; p++)
document.write(arr[p] + " " );
}
let arr = [4, 6, 8, 9, 8, 12,
14, 17, 15];
let K = 2;
let N = arr.length;
getMaxLengthSubarray(arr, N, K);
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)