Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find the length of Kth N-sided polygon formed by given operations

  • Last Updated : 10 May, 2021

Given an integer L, representing the side length of an N-sided regular polygon and integer K, the task is to find the side length of the Kth N-sided regular polygon formed inside the (K – 1)th regular polygon by connecting midpoints of the sides of the (K – 1)th polygon.

Examples:

Input: N = 3, L = 6, K = 2
Output: 3

Input: N = 5, L = 21, K = 7
Output: 5.88796

Approach: The given problem can be solved based on the following observations:

  • Suppose,  \theta represents the interior angle of the N-sided polygon which is the same for all the polygons formed inside i.e., \theta = \frac{(N - 2)*180}{N}
  • The length of the side of the first polygon formed inside by connecting midpoints of the sides can be calculated using the formula as \frac{2*L*sin(\frac{\theta}{2})}{2}          .
  • The length of the side of the Kth polygon formed inside the (K – 1)th polygon and connecting midpoints of the sides of the (K – 1)th polygon is L*Sin^{K - 1}(\frac{\theta}{2})

Follow the steps below to solve the problem:

Below is the implementation of the above approach:

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
#define PI 3.14159265
 
// Function to calculate the interior
// angle of a N-sided regular polygon
double findInteriorAngle(int n)
{
    return (n - 2) * PI / n;
}
 
// Function to find the K-th polygon
// formed inside the (K - 1)th polygon
double calculateSideLength(double L,
                           int N, int K)
{
    // Stores the interior angle
    double angle = findInteriorAngle(N);
 
    // Stores the side length of
    // K-th regular polygon
    double length = L * pow(sin(angle / 2),
                            (K - 1));
 
    // Return the length
    return length;
}
 
// Driver Code
int main()
{
    double N = 5, L = 21, K = 7;
    cout << calculateSideLength(L, N, K);
 
    return 0;
}

Java




// Java program for the above approach
import java.util.*;
 
class GFG{
     
static final double PI = 3.14159265;
 
// Function to calculate the interior
// angle of a N-sided regular polygon
static double findInteriorAngle(int n)
{
    return ((n - 2) * PI) / n;
}
 
// Function to find the K-th polygon
// formed inside the (K - 1)th polygon
static double calculateSideLength(double L,
                                  int N, int K)
{
     
    // Stores the interior angle
    double angle = findInteriorAngle(N);
 
    // Stores the side length of
    // K-th regular polygon
    double length = L * Math.pow(Math.sin(angle / 2),
                                             (K - 1));
 
    // Return the length
    return length;
}
 
// Driver Code
public static void main(String[] args)
{
    double L = 21;
    int N = 5, K = 7;
     
    System.out.print(calculateSideLength(L, N, K));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program for the above approach
import math
PI = 3.14159265
 
# Function to calculate the interior
# angle of a N-sided regular polygon
def findInteriorAngle(n):
 
    return (n - 2) * PI / n
 
# Function to find the K-th polygon
# formed inside the (K - 1)th polygon
def calculateSideLength(L,
                        N, K):
 
    # Stores the interior angle
    angle = findInteriorAngle(N)
 
    # Stores the side length of
    # K-th regular polygon
    length = L * pow(math.sin(angle / 2),
                     (K - 1))
 
    # Return the length
    return length
 
 
# Driver Code
if __name__ == "__main__":
 
    N = 5
    L = 21
    K = 7
    print(calculateSideLength(L, N, K))
 
    # This code is contributed by ukasp.

C#




// C# program for the above approach
using System;
 
class GFG{
     
static readonly double PI = 3.14159265;
 
// Function to calculate the interior
// angle of a N-sided regular polygon
static double findInteriorAngle(int n)
{
    return ((n - 2) * PI) / n;
}
 
// Function to find the K-th polygon
// formed inside the (K - 1)th polygon
static double calculateSideLength(double L,
                                  int N, int K)
{
     
    // Stores the interior angle
    double angle = findInteriorAngle(N);
 
    // Stores the side length of
    // K-th regular polygon
    double length = L * Math.Pow(Math.Sin(angle / 2),
                                             (K - 1));
 
    // Return the length
    return length;
}
 
// Driver Code
public static void Main(String[] args)
{
    double L = 21;
    int N = 5, K = 7;
     
    Console.Write(calculateSideLength(L, N, K));
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
        // Javascript program for the above approach
        const PI = 3.14159265
         
        // Function to calculate the interior
        // angle of a N-sided regular polygon
        function findInteriorAngle(n)
        {
            return (n - 2) * PI / n;
        }
 
        // Function to find the K-th polygon
        // formed inside the (K - 1)th polygon
        function calculateSideLength(L,
            N, K) {
            // Stores the interior angle
            let angle = findInteriorAngle(N);
 
            // Stores the side length of
            // K-th regular polygon
            let length = L * Math.pow(Math.sin(angle / 2),
                (K - 1));
 
            // Return the length
            return length;
        }
 
        // Driver Code
 
        let N = 5
        let L = 21
        let K = 7;
        document.write(calculateSideLength(L, N, K))
 
    </script>
Output: 
5.88796

 

Time Complexity: O(log K)
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!