Skip to content
Related Articles
Open in App
Not now

Related Articles

Find the Kth pair in ordered list of all possible sorted pairs of the Array

Improve Article
Save Article
  • Difficulty Level : Expert
  • Last Updated : 15 Nov, 2021
Improve Article
Save Article

Given an array arr[] containing N integers and a number K, the task is to find the K-th pair in the ordered list of all possible N2 sorted pairs of the array arr[].  

A pair (p1, q1) is lexicographically smaller than the pair (p2, q2) only if p1 ≤ p2 and q1 < q2.

Examples:  

Input: arr[] = {2, 1}, K = 4 
Output: {2, 2} 
Explanation: 
The sorted sequence for the given array is {1, 1}, {1, 2}, {2, 1}, {2, 2}. So the 4th pair is {2, 2}.
Input: arr[] = {3, 1, 5}, K = 2 
Output: {1, 3}  

Approach: Naturally, K-th sorted pair from all possible set of pairs will be {arr[K/N], arr[K%N]}. But, this method works only if all the elements in the array are unique. Therefore, the following steps are followed to make the array behave like a unique array:  

  • Let the array arr[] be {X, X, X, … D1, D2, D3 … DN – T}.
  • Here, let’s assume the number of repeating elements in the array to be T and the element which is being repeated be X. So, the number of distinct elements in the array is (N – T).
  • Now, from the first N * T pairs out of N2 pairs of elements, the first T2 elements will always be {X, X}.
  • The next T elements will be {X, D2} and the next T elements will be {X, D2} and so on.
  • So, if we need to find the K-th element, subtract N * T from K and skip the first T same elements.
  • Repeat the above process until K becomes less than N * T.
  • At this step, the first element in the pair would be the counter variable ‘i’. The second element would be the remaining K-th element from the remaining elements which is K / T. So, the required answer is {arr[i], arr[K/T]}.

Below is the implementation of the above approach: 

C++




// C++ program to find the K-th pair
// in a lexicographically sorted array
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the k-th pair
void kthpair(int n, int k, int arr[])
{
    int i, t;
 
    // Sorting the array
    sort(arr, arr + n);
 
    --k;
 
    // Iterating through the array
    for (i = 0; i < n; i += t) {
 
        // Finding the number of same elements
        for (t = 1; arr[i] == arr[i + t]; ++t)
            ;
 
        // Checking if N*T is less than the
        // remaining K. If it is, then arr[i]
        // is the first element in the required
        // pair
        if (t * n > k)
            break;
 
        k = k - t * n;
    }
 
    // Printing the K-th pair
    cout << arr[i] << ' ' << arr[k / t];
}
 
// Driver code
int main()
{
 
    int n = 3, k = 2;
    int arr[n] = { 3, 1, 5 };
    kthpair(n, k, arr);
}

Java




// Java program to find the K-th pair
// in a lexicographically sorted array
import java.util.*;
class GFG{
 
// Function to find the k-th pair
static void kthpair(int n, int k,
                    int arr[])
{
    int i, t = 0;
 
    // Sorting the array
    Arrays.sort(arr);
 
    --k;
 
    // Iterating through the array
    for (i = 0; i < n; i += t)
    {
 
        // Finding the number of same elements
        for (t = 1; arr[i] == arr[i + t]; ++t)
            ;
 
        // Checking if N*T is less than the
        // remaining K. If it is, then arr[i]
        // is the first element in the required
        // pair
        if (t * n > k)
            break;
 
        k = k - t * n;
    }
 
    // Printing the K-th pair
    System.out.print(arr[i] + " " +    
                     arr[k / t]);
}
 
// Driver code
public static void main(String[] args)
{
    int n = 3, k = 2;
    int arr[] = { 3, 1, 5 };
    kthpair(n, k, arr);
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find the K-th pair
# in a lexicographically sorted array
 
# Function to find the k-th pair
def kthpair(n, k, arr):
 
    # Sorting the array
    arr.sort()
    k -= 1
 
    # Iterating through the array
    i = 0
    while (i < n):
 
        # Finding the number of same elements
        t = 1
        while (arr[i] == arr[i + t]):
            t += 1
 
        # Checking if N*T is less than the
        # remaining K. If it is, then arr[i]
        # is the first element in the required
        # pair
        if (t * n > k):
            break
        k = k - t * n
         
        i += t
 
    # Printing the K-th pair
    print(arr[i], " ", arr[k // t])
 
# Driver code
if __name__ == "__main__":
 
    n, k = 3, 2
    arr = [ 3, 1, 5 ]
     
    kthpair(n, k, arr)
 
# This code is contributed by chitranayal

C#




// C# program to find the K-th pair
// in a lexicographically sorted array
using System;
 
class GFG{
     
// Function to find the k-th pair
static void kthpair(int n, int k,
                    int[] arr)
{
    int i, t = 0;
     
    // Sorting the array
    Array.Sort(arr);
     
    --k;
     
    // Iterating through the array
    for(i = 0; i < n; i += t)
    {
        
       // Finding the number of same elements
       for(t = 1; arr[i] == arr[i + t]; ++t);
           
          // Checking if N*T is less than the
          // remaining K. If it is, then arr[i]
          // is the first element in the required
          // pair
          if (t * n > k)
              break;
          k = k - t * n;
    }
     
    // Printing the K-th pair
    Console.Write(arr[i] + " " + arr[k / t]);
}
     
// Driver code
static public void Main ()
{
    int n = 3, k = 2;
    int[] arr = { 3, 1, 5 };
     
    kthpair(n, k, arr);
}
}
 
// This code is contributed by ShubhamCoder

Javascript




<script>
 
// Java program to find the K-th pair
// in a lexicographically sorted array
 
 
// Function to find the k-th pair
function kthpair(n,k,arr)
{
    let i, t = 0;
 
    // Sorting the array
    arr.sort();
 
    --k;
 
    // Iterating through the array
    for (i = 0; i < n; i += t)
    {
 
        // Finding the number of same elements
        for (t = 1; arr[i] == arr[i + t]; ++t)
            ;
 
        // Checking if N*T is less than the
        // remaining K. If it is, then arr[i]
        // is the first element in the required
        // pair
        if (t * n > k)
            break;
 
        k = k - t * n;
    }
 
    // Printing the K-th pair
    document.write(arr[i] + " " +    
                     arr[k / t]);
}
 
// Driver code
 
    let n = 3, k = 2;
   let arr =[ 3, 1, 5 ];
    kthpair(n, k, arr);
 
 
 
//contributed by 171fa07058
</script>

Output: 

1 3

 

Time Complexity: O(N * log(N)), where N is the size of the array.

Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!