Find the index of the element in an array which divides most elements before it

Given an array arr, the task is to find the index of the element in an array which divides most elements before it

Examples:

Input: arr = {5, 2, 1, 4, 5, 8, 2}
Output: 6
Explanation
arr[6] = 2 
it divides 2, 4, and 8 (3 elements)

Input: arr = {8, 1, 28, 4, 1, 6, 7}
Output: 4

Approach:

Below is the implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program find the index of the element
// in an array which divides
// most elements before it
  
#include <bits/stdc++.h>
using namespace std;
  
// Function to get the max element
// divisible by arr[i]
int maxElement(int arr[], int n)
{
  
    map<int, int> mp;
    int maxx = -1, maxElement = -1;
  
    for (int i = 0; i < n; i++) {
        int num = arr[i];
        int cnt = 0;
  
        // Update count for A[i]
        if (mp.find(num) != mp.end()) {
            cnt += mp[num];
        }
  
        // Generate Divisor For A[i]
        for (int j = 1; j * j <= num; j++) {
            if (num % j == 0) {
                mp[j]++;
                if (j != num / j)
                    mp[num / j]++;
            }
        }
  
        // Update Max Element
        if (cnt > maxx) {
            maxElement = i;
            maxx = cnt;
        }
    }
  
    return maxElement;
}
  
// Driver code
int main()
{
  
    int arr[] = { 5, 2, 1, 4, 5, 8, 2 };
    int n = sizeof(arr) / sizeof(arr[0]);
  
    cout << maxElement(arr, n) << '\n';
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program find the index of the element
// in an array which divides
// most elements before it
import java.util.*;
  
class GFG 
{
  
    // Function to get the max element
    // divisible by arr[i]
    static int maxElement(int arr[], int n) 
    {
  
        HashMap<Integer, Integer> mp = new HashMap<Integer, Integer>();
        int maxx = -1, maxElement = -1;
  
        for (int i = 0; i < n; i++) 
        {
            int num = arr[i];
            int cnt = 0;
  
            // Update count for A[i]
            if (mp.containsKey(num))
            {
                cnt += mp.get(num);
            }
  
            // Generate Divisor For A[i]
            for (int j = 1; j * j <= num; j++)
            {
                if (num % j == 0
                {
                    if (mp.containsKey(j))
                        mp.put(j, mp.get(j) + 1);
                    else
                        mp.put(j, 1);
                    if (j != num / j)
                        if (mp.containsKey(num / j))
                            mp.put(num / j, mp.get(num / j) + 1);
                        else
                            mp.put(num / j, 1);
                }
            }
  
            // Update Max Element
            if (cnt > maxx)
            {
                maxElement = i;
                maxx = cnt;
            }
        }
  
        return maxElement;
    }
  
    // Driver code
    public static void main(String[] args) 
    {
  
        int arr[] = { 5, 2, 1, 4, 5, 8, 2 };
        int n = arr.length;
  
        System.out.print(maxElement(arr, n));
    }
}
  
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program find the index of the element
# in an array which divides
# most elements before it
  
# Function to get the max element
# divisible by arr[i]
def maxElement(arr, n):
  
    mp = dict()
    maxx = -1
    maxElement = -1
  
    for i in range(n):
        num = arr[i]
        cnt = 0
  
        # Update count for A[i]
        if (num in mp):
            cnt += mp[num]
  
        # Generate Divisor For A[i]
        j = 1
  
        while j * j <= num:
            if (num % j == 0):
                mp[j] = mp.get(j, 0) + 1
                if (j != num // j):
                    mp[num // j] = mp.get(num//j, 0) + 1
            j += 1
  
        # Update Max Element
        if (cnt > maxx):
            maxElement = i
            maxx = cnt
  
    return maxElement
  
# Driver code
arr = [5, 2, 1, 4, 5, 8, 2]
n = len(arr)
  
print(maxElement(arr, n))
  
# This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program find the index of the element
// in an array which divides
// most elements before it
using System;
using System.Collections.Generic;
  
class GFG 
{
  
    // Function to get the max element
    // divisible by arr[i]
    static int maxElement(int []arr, int n) 
    {
  
        Dictionary<int, int> mp = new Dictionary<int, int>();
        int maxx = -1, maxElement = -1;
  
        for (int i = 0; i < n; i++) 
        {
            int num = arr[i];
            int cnt = 0;
  
            // Update count for A[i]
            if (mp.ContainsKey(num))
            {
                cnt += mp[num];
            }
  
            // Generate Divisor For A[i]
            for (int j = 1; j * j <= num; j++)
            {
                if (num % j == 0) 
                {
                    if (mp.ContainsKey(j))
                        mp[j] = mp[j] + 1;
                    else
                        mp.Add(j, 1);
                    if (j != num / j)
                        if (mp.ContainsKey(num / j))
                            mp[num / j] = mp[num / j] + 1;
                        else
                            mp.Add(num / j, 1);
                }
            }
  
            // Update Max Element
            if (cnt > maxx)
            {
                maxElement = i;
                maxx = cnt;
            }
        }
  
        return maxElement;
    }
  
    // Driver code
    public static void Main(String[] args) 
    {
  
        int []arr = { 5, 2, 1, 4, 5, 8, 2 };
        int n = arr.Length;
  
        Console.Write(maxElement(arr, n));
    }
}
  
// This code is contributed by PrinciRaj1992
chevron_right

Output:
6

Time Complexity: O(N√max(Arr))

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :