Open In App

# Find the hypotenuse of a right angled triangle with given two sides

Given the other two sides of a right angled triangle, the task is to find it’s hypotenuse.
Examples:

Input: side1 = 3, side2 = 4
Output: 5.00
32 + 42 = 52
Input: side1 = 12, side2 = 15
Output: 19.21

Approach: Pythagoras theorem states that the square of hypotenuse of a right angled triangle is equal to the sum of squares of the other two sides.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include``#include ``#include ``using` `namespace` `std;`` ` `// Function to return the hypotenuse of the``// right angled triangle``double` `findHypotenuse(``double` `side1, ``double` `side2)``{``    ``double` `h = ``sqrt``((side1 * side1) + (side2 * side2));``    ``return` `h;``}`` ` `// Driver code``int` `main()``{``    ``int` `side1 = 3, side2 = 4;``    ``cout << fixed << showpoint;``    ``cout << setprecision(2);``    ``cout << findHypotenuse(side1, side2);``}``     ` `// This code is contributed by``// Surendra_Gangwar`

## Java

 `// Java implementation of the approach``class` `GFG {`` ` `    ``// Function to return the hypotenuse of the``    ``// right angled triangle``    ``static` `double` `findHypotenuse(``double` `side1, ``double` `side2)``    ``{``        ``double` `h = Math.sqrt((side1 * side1) + (side2 * side2));``        ``return` `h;``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `main(String s[])``    ``{``        ``int` `side1 = ``3``, side2 = ``4``;``        ``System.out.printf(``"%.2f"``, findHypotenuse(side1, side2));``    ``}``}`

## Python3

 `# Python implementation of the approach`` ` `# Function to return the hypotenuse of the``# right angled triangle``def` `findHypotenuse(side1, side2):`` ` `    ``h ``=` `(((side1 ``*` `side1) ``+` `(side2 ``*` `side2))``*``*``(``1``/``2``));``    ``return` `h;`` ` `# Driver code``side1 ``=` `3``;``side2 ``=` `4``;`` ` `print``(findHypotenuse(side1, side2));`` ` `# This code contributed by Rajput-Ji`

## C#

 `// C# implementation of the approach``using` `System;``     ` `class` `GFG``{`` ` `    ``// Function to return the hypotenuse ``    ``// of the right angled triangle``    ``static` `double` `findHypotenuse(``double` `side1,``                                 ``double` `side2)``    ``{``        ``double` `h = Math.Sqrt((side1 * side1) + ``                             ``(side2 * side2));``        ``return` `h;``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `side1 = 3, side2 = 4;``        ``Console.Write(``"{0:F2}"``, findHypotenuse(side1, ``                                               ``side2));``    ``}``}`` ` `// This code is contributed ``// by Princi Singh`

## Javascript

 ``

Output:

`5.00`

Time Complexity: O(log(2*(s2)) where s is the side of the rectangle. because time complexity of inbuilt sqrt function is O(log(n))

Auxiliary Space: O(1)