Given an array arr[] of size N. For every element in the array, the task is to find the index of the farthest element in the array to the right which is smaller than the current element. If no such number exists then print -1.
Examples:
Input: arr[] = {3, 1, 5, 2, 4}
Output: 3 -1 4 -1 -1
arr[3] is the farthest smallest element to the right of arr[0].
arr[4] is the farthest smallest element to the right of arr[2].
And for the rest of the elements, there is no smaller element to their right.
Input: arr[] = {1, 2, 3, 4, 0}
Output: 4 4 4 4 -1
Approach: An efficient approach is to create a suffix_min[] array where suffix_min[i] stores the minimum element from the subarray arr[i … N – 1]. Now for any element arr[i], binary search can be used on the subarray suffix_min[i + 1 … N – 1] to find the farthest smallest element to the right of arr[i].
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to find the farthest // smaller number in the right side void farthest_min( int a[], int n) { // To store minimum element // in the range i to n int suffix_min[n]; suffix_min[n - 1] = a[n - 1]; for ( int i = n - 2; i >= 0; i--) { suffix_min[i] = min(suffix_min[i + 1], a[i]); } for ( int i = 0; i < n; i++) { int low = i + 1, high = n - 1, ans = -1; while (low <= high) { int mid = (low + high) / 2; // If currnet element in the suffix_min // is less than a[i] then move right if (suffix_min[mid] < a[i]) { ans = mid; low = mid + 1; } else high = mid - 1; } // Print the required answer cout << ans << " " ; } } // Driver code int main() { int a[] = { 3, 1, 5, 2, 4 }; int n = sizeof (a) / sizeof (a[0]); farthest_min(a, n); return 0; } |
Java
// Java implementation of the approach class GFG { // Function to find the farthest // smaller number in the right side static void farthest_min( int [] a, int n) { // To store minimum element // in the range i to n int [] suffix_min = new int [n]; suffix_min[n - 1 ] = a[n - 1 ]; for ( int i = n - 2 ; i >= 0 ; i--) { suffix_min[i] = Math.min(suffix_min[i + 1 ], a[i]); } for ( int i = 0 ; i < n; i++) { int low = i + 1 , high = n - 1 , ans = - 1 ; while (low <= high) { int mid = (low + high) / 2 ; // If currnet element in the suffix_min // is less than a[i] then move right if (suffix_min[mid] < a[i]) { ans = mid; low = mid + 1 ; } else high = mid - 1 ; } // Print the required answer System.out.print(ans + " " ); } } // Driver code public static void main(String[] args) { int [] a = { 3 , 1 , 5 , 2 , 4 }; int n = a.length; farthest_min(a, n); } } // This code is contributed by ihritik |
Python3
# Python3 implementation of the approach # Function to find the farthest # smaller number in the right side def farthest_min(a, n): # To store minimum element # in the range i to n suffix_min = [ 0 for i in range (n)] suffix_min[n - 1 ] = a[n - 1 ] for i in range (n - 2 , - 1 , - 1 ): suffix_min[i] = min (suffix_min[i + 1 ], a[i]) for i in range (n): low = i + 1 high = n - 1 ans = - 1 while (low < = high): mid = (low + high) / / 2 # If currnet element in the suffix_min # is less than a[i] then move right if (suffix_min[mid] < a[i]): ans = mid low = mid + 1 else : high = mid - 1 # Print the required answer print (ans, end = " " ) # Driver code a = [ 3 , 1 , 5 , 2 , 4 ] n = len (a) farthest_min(a, n) # This code is contributed by Mohit Kumar |
C#
// C# implementation of the approach using System; class GFG { // Function to find the farthest // smaller number in the right side static void farthest_min( int [] a, int n) { // To store minimum element // in the range i to n int [] suffix_min = new int [n]; suffix_min[n - 1] = a[n - 1]; for ( int i = n - 2; i >= 0; i--) { suffix_min[i] = Math.Min(suffix_min[i + 1], a[i]); } for ( int i = 0; i < n; i++) { int low = i + 1, high = n - 1, ans = -1; while (low <= high) { int mid = (low + high) / 2; // If currnet element in the suffix_min // is less than a[i] then move right if (suffix_min[mid] < a[i]) { ans = mid; low = mid + 1; } else high = mid - 1; } // Print the required answer Console.Write(ans + " " ); } } // Driver code public static void Main() { int [] a = { 3, 1, 5, 2, 4 }; int n = a.Length; farthest_min(a, n); } } // This code is contributed by ihritik |
3 -1 4 -1 -1
Time Complexity: O(N* log(N) )
Auxiliary Space: O(N)
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.