# Find the count of subsequences where each element is divisible by K

Given an array **arr[]** and an integer **K**, the task is to find the total number of subsequences from the array where each element is divisible by **K**.**Examples:**

Input:arr[] = {1, 2, 3, 6}, K = 3Output:3

{3}, {6} and {3, 6} are the only valid subsequences.Input:arr[] = {5, 10, 15, 20, 25}, K = 5Output:31

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the

DSA Self Paced Courseat a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please referComplete Interview Preparation Course.In case you wish to attend

live classeswith experts, please referDSA Live Classes for Working ProfessionalsandCompetitive Programming Live for Students.

**Approach:** Since each of the elements must be divisible by **K**, total subsequences are equal to **2 ^{cnt}** where

**cnt**is the number of elements in the array that are divisible by

**K**.

**Note**that

**1**will be subtracted from the result in order to exclude the empty subsequence. So, the final result will be

**2**.

^{cnt}– 1Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return the count` `// of all valid subsequences` `int` `countSubSeq(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `// To store the count of elements` ` ` `// which are divisible by k` ` ` `int` `count = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++) {` ` ` `// If current element is divisible by` ` ` `// k then increment the count` ` ` `if` `(arr[i] % k == 0) {` ` ` `count++;` ` ` `}` ` ` `}` ` ` `// Total (2^n - 1) non-empty subsequences` ` ` `// are possible with n element` ` ` `return` `(` `pow` `(2, count) - 1);` `}` `// Driver code` `int` `main()` `{` ` ` `int` `arr[] = { 1, 2, 3, 6 };` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `int` `k = 3;` ` ` `cout << countSubSeq(arr, n, k);` ` ` `return` `0;` `}` |

## Java

`// Java implementation of the approach` `import` `java.util.*;` `class` `GFG` `{` `// Function to return the count` `// of all valid subsequences` `static` `int` `countSubSeq(` `int` `arr[], ` `int` `n, ` `int` `k)` `{` ` ` `// To store the count of elements` ` ` `// which are divisible by k` ` ` `int` `count = ` `0` `;` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++)` ` ` `{` ` ` `// If current element is divisible by` ` ` `// k then increment the count` ` ` `if` `(arr[i] % k == ` `0` `)` ` ` `{` ` ` `count++;` ` ` `}` ` ` `}` ` ` `// Total (2^n - 1) non-empty subsequences` ` ` `// are possible with n element` ` ` `return` `(` `int` `) (Math.pow(` `2` `, count) - ` `1` `);` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `arr[] = { ` `1` `, ` `2` `, ` `3` `, ` `6` `};` ` ` `int` `n = arr.length;` ` ` `int` `k = ` `3` `;` ` ` `System.out.println(countSubSeq(arr, n, k));` `}` `}` `// This code is contributed by Rajput-Ji` |

## Python3

`# Python3 implementation of the approach` `# Function to return the count` `# of all valid subsequences` `def` `countSubSeq(arr, n, k) :` ` ` `# To store the count of elements` ` ` `# which are divisible by k` ` ` `count ` `=` `0` `;` ` ` `for` `i ` `in` `range` `(n) :` ` ` `# If current element is divisible by` ` ` `# k then increment the count` ` ` `if` `(arr[i] ` `%` `k ` `=` `=` `0` `) :` ` ` `count ` `+` `=` `1` `;` ` ` `# Total (2^n - 1) non-empty subsequences` ` ` `# are possible with n element` ` ` `return` `(` `2` `*` `*` `count ` `-` `1` `);` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` `arr ` `=` `[ ` `1` `, ` `2` `, ` `3` `, ` `6` `];` ` ` `n ` `=` `len` `(arr);` ` ` `k ` `=` `3` `;` ` ` `print` `(countSubSeq(arr, n, k));` `# This code is contributed by AnkitRai01` |

## C#

`// C# implementation of the approach` `using` `System;` ` ` `class` `GFG` `{` `// Function to return the count` `// of all valid subsequences` `static` `int` `countSubSeq(` `int` `[]arr, ` `int` `n, ` `int` `k)` `{` ` ` `// To store the count of elements` ` ` `// which are divisible by k` ` ` `int` `count = 0;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `// If current element is divisible by` ` ` `// k then increment the count` ` ` `if` `(arr[i] % k == 0)` ` ` `{` ` ` `count++;` ` ` `}` ` ` `}` ` ` `// Total (2^n - 1) non-empty subsequences` ` ` `// are possible with n element` ` ` `return` `(` `int` `) (Math.Pow(2, count) - 1);` `}` `// Driver code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `[]arr = { 1, 2, 3, 6 };` ` ` `int` `n = arr.Length;` ` ` `int` `k = 3;` ` ` `Console.WriteLine(countSubSeq(arr, n, k));` `}` `}` `// This code is contributed by 29AjayKumar` |

## Javascript

`<script>` `// Javascript implementation of the approach` `// Function to return the count` `// of all valid subsequences` `function` `countSubSeq(arr, n, k)` `{` ` ` `// To store the count of elements` ` ` `// which are divisible by k` ` ` `let count = 0;` ` ` `for` `(let i = 0; i < n; i++) {` ` ` `// If current element is divisible by` ` ` `// k then increment the count` ` ` `if` `(arr[i] % k == 0) {` ` ` `count++;` ` ` `}` ` ` `}` ` ` `// Total (2^n - 1) non-empty subsequences` ` ` `// are possible with n element` ` ` `return` `(Math.pow(2, count) - 1);` `}` `// Driver code` ` ` `let arr = [ 1, 2, 3, 6 ];` ` ` `let n = arr.length;` ` ` `let k = 3;` ` ` `document.write(countSubSeq(arr, n, k));` `</script>` |

**Output:**

3