Find the closest element in Binary Search Tree | Space Efficient Method

• Difficulty Level : Medium
• Last Updated : 30 Jun, 2021

Given a binary search tree and a target node K. The task is to find the node with the minimum absolute difference with given target value K.
NOTE: The approach used should have constant extra space consumed O(1). No recursion or stack/queue like containers should be used. Examples:

Input:  k = 4
Output:  4

Input:  k = 18
Output:  17

A simple solution mentioned in this post uses recursion to get the closest element to a key in Binary search tree. The method used in the above mentioned post consumes O(n) extra space due to recursion.
Now we can easily modify the above mentioned approach using Morris traversal which is a space efficient approach to do inorder tree traversal without using recursion or stack/queue in constant space O(1).
Morris traversal is based on Threaded Binary trees which makes use of NULL pointers in a tree to make them point to some successor or predecessor nodes. As in a binary tree with n nodes, n+1 NULL pointers waste memory.
In the algorithm mentioned below we simply do inorder tree traversal and while doing inorder tree traversal using Morris Traversal we check for differences between the node’s data and the key and maintain two variables ‘diff’ and ‘closest’ which are updated when we find a closer node to the key. When we are done with the complete inorder tree traversal we have the closest node.
Algorithm :

1) Initialize Current as root.

2) Initialize a variable diff as INT_MAX.

3)initialize a variable closest(pointer to node) which
will be returned.

4) While current is not NULL:

4.1) If the current has no left child:
a) If the absolute difference between current's data
and the key is smaller than diff:
1) Set diff as the absolute difference between the
current node and the key.
2) Set closest as the current node.

b)Otherwise, Move to the right child of current.

4.2) Else, here we have 2 cases:

a) Find the inorder predecessor of the current node.
Inorder predecessor is the rightmost node
in the left subtree or left child itself.

b) If the right child of the inorder predecessor is NULL:
1) Set current as the right child of its inorder
2) Move current node to its left child.

and it's inorder predecessor already exists :

1) Set right pointer of the inorder predecessor node as NULL.

2) If the absolute difference between current's data and
the key is smaller than diff:
a) Set diff variable as the absolute difference between
the current node and the key.
b) Set closest as the current node.

3) Move current to its right child.

5)By the time we have traversed the whole tree, we have the
closest node, so we simply return closest.

Below is the implementation of above approach:

C++

 // CPP program to find closest value in// a Binary Search Tree.#include #include using namespace std; // Tree Nodestruct Node {    int data;    Node *left, *right;}; // Utility function to create a new NodeNode* newNode(int data){    Node* temp = new Node();    temp->data = data;    temp->left = temp->right = NULL;    return temp;} // Function to find the Node closest to the// given key in BST using Morris TraversalNode* closestNodeUsingMorrisTraversal(Node* root,                                         int key){    int diff = INT_MAX;    Node* curr = root;    Node* closest;     while (curr) {        if (curr->left == NULL) {             // updating diff if the current diff is            // smaller than prev difference            if (diff > abs(curr->data - key)) {                diff = abs(curr->data - key);                closest = curr;            }             curr = curr->right;        }         else {             // finding the inorder predecessor            Node* pre = curr->left;            while (pre->right != NULL &&                   pre->right != curr)                pre = pre->right;             if (pre->right == NULL) {                pre->right = curr;                curr = curr->left;            }             // threaded link between curr and            // its predecessor already exists            else {                pre->right = NULL;                 // if a closer Node found, then update                // the diff and set closest to current                if (diff > abs(curr->data - key)) {                    diff = abs(curr->data - key);                    closest = curr;                }                 // moving to the right child                curr = curr->right;            }        }    }     return closest;} // Driver Codeint main(){    /* Constructed binary tree is          5        /   \       3     9     /  \   /  \    1    2  8    12 */    Node* root = newNode(5);    root->left = newNode(3);    root->right = newNode(9);    root->left->left = newNode(1);    root->left->right = newNode(2);    root->right->left = newNode(8);    root->right->right = newNode(12);     cout << closestNodeUsingMorrisTraversal(root, 10)->data;     return 0;}

Java

 // Java program to find closest value in// a Binary Search Tree.class GFG{  // Tree Nodestatic class Node{    int data;    Node left, right;}; // Utility function to create a new Nodestatic Node newNode(int data){    Node temp = new Node();    temp.data = data;    temp.left = temp.right = null;    return temp;} // Function to find the Node closest to the// given key in BST using Morris Traversalstatic Node closestNodeUsingMorrisTraversal(Node root,                                        int key){    int diff = Integer.MAX_VALUE;    Node curr = root;    Node closest = null;     while (curr != null)    {        if (curr.left == null)        {             // updating diff if the current diff is            // smaller than prev difference            if (diff > Math.abs(curr.data - key))            {                diff = Math.abs(curr.data - key);                closest = curr;            }             curr = curr.right;        }         else        {             // finding the inorder predecessor            Node pre = curr.left;            while (pre.right != null &&                pre.right != curr)                pre = pre.right;             if (pre.right == null)            {                pre.right = curr;                curr = curr.left;            }             // threaded link between curr and            // its predecessor already exists            else            {                pre.right = null;                 // if a closer Node found, then update                // the diff and set closest to current                if (diff > Math.abs(curr.data - key))                {                    diff = Math.abs(curr.data - key);                    closest = curr;                }                 // moving to the right child                curr = curr.right;            }        }    }     return closest;} // Driver Codepublic static void main(String[] args){    /* Constructed binary tree is        5        / \    3     9    / \ / \    1 2 8 12 */    Node root = newNode(5);    root.left = newNode(3);    root.right = newNode(9);    root.left.left = newNode(1);    root.left.right = newNode(2);    root.right.left = newNode(8);    root.right.right = newNode(12);     System.out.println(closestNodeUsingMorrisTraversal(root, 10).data);}} // This code is contributed by Rajput-Ji

Python3

 # Python program to find closest value in# Binary search Tree _MIN = -2147483648_MAX = 2147483648 # Helper function that allocates a new# node with the given data and None left# and right poers.                                class newNode:     # Constructor to create a new node    def __init__(self, data):        self.data = data        self.left = None        self.right = None # Function to find the Node closest to the# given key in BST using Morris Traversaldef closestNodeUsingMorrisTraversal(root,key):    diff = _MAX    curr = root    closest=0     while (curr) :        if (curr.left == None) :             # updating diff if the current diff is            # smaller than prev difference            if (diff > abs(curr.data - key)) :                diff = abs(curr.data - key)                closest = curr                         curr = curr.right                  else :             # finding the inorder predecessor            pre = curr.left            while (pre.right != None and                    pre.right != curr):                pre = pre.right             if (pre.right == None):                pre.right = curr                curr = curr.left                          # threaded link between curr and            # its predecessor already exists            else :                pre.right = None                 # if a closer Node found, then update                # the diff and set closest to current                if (diff > abs(curr.data - key)) :                    diff = abs(curr.data - key)                    closest = curr                                 # moving to the right child                curr = curr.right                     return closest          # Driver Codeif __name__ == '__main__':    """ /* Constructed binary tree is        5        / \    3 9    / \ / \    1 2 8 12 */ """         root = newNode(5)    root.left = newNode(3)    root.right = newNode(9)    root.left.right = newNode(2)    root.left.left = newNode(1)    root.right.right = newNode(12)    root.right.left = newNode(8)    print(closestNodeUsingMorrisTraversal(root, 10).data) # This code is contributed# Shubham Singh(SHUBHAMSINGH10)

C#

 // C# program to find closest value in// a Binary Search Tree.using System;     class GFG{  // Tree Nodepublic class Node{    public int data;    public Node left, right;}; // Utility function to create a new Nodestatic Node newNode(int data){    Node temp = new Node();    temp.data = data;    temp.left = temp.right = null;    return temp;} // Function to find the Node closest to the// given key in BST using Morris Traversalstatic Node closestNodeUsingMorrisTraversal(Node root,                                        int key){    int diff = int.MaxValue;    Node curr = root;    Node closest = null;     while (curr != null)    {        if (curr.left == null)        {             // updating diff if the current diff is            // smaller than prev difference            if (diff > Math.Abs(curr.data - key))            {                diff = Math.Abs(curr.data - key);                closest = curr;            }             curr = curr.right;        }         else        {             // finding the inorder predecessor            Node pre = curr.left;            while (pre.right != null &&                pre.right != curr)                pre = pre.right;             if (pre.right == null)            {                pre.right = curr;                curr = curr.left;            }             // threaded link between curr and            // its predecessor already exists            else            {                pre.right = null;                 // if a closer Node found, then update                // the diff and set closest to current                if (diff > Math.Abs(curr.data - key))                {                    diff = Math.Abs(curr.data - key);                    closest = curr;                }                 // moving to the right child                curr = curr.right;            }        }    }     return closest;} // Driver Codepublic static void Main(String[] args){    /* Constructed binary tree is        5        / \    3     9    / \ / \    1 2 8 12 */    Node root = newNode(5);    root.left = newNode(3);    root.right = newNode(9);    root.left.left = newNode(1);    root.left.right = newNode(2);    root.right.left = newNode(8);    root.right.right = newNode(12);     Console.WriteLine(closestNodeUsingMorrisTraversal(root, 10).data);}} /* This code is contributed by PrinciRaj1992 */

Javascript


Output:
9

Time Complexity: O(n)
Auxiliary Space : O(1)

My Personal Notes arrow_drop_up