Find the area of rhombus from given Angle and Side length

Given two integers A and X, denoting the length of a side of a rhombus and an angle respectively, the task is to find the area of the rhombus.

A rhombus is a quadrilateral having 4 sides of equal length, in which both the opposite sides are parallel, and opposite angles are equal.

Examples:

Input: A = 4, X = 60
Output: 13.86

Input: A = 4, X = 30
Output: 8.0



Approach:For a Rhombus ABCD having the length of a side a and an angle x, the area of triangle ABD can be calculated using Side-Angle-Side property of triangle by the following equation:

Area of Triangle ABD = 1/2 (a2) sin x
Area of Rhombus ABCD will be double the area of ABD triangle.

Therefore, Area of Rhombus ABCD = (a2) sin x

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to calculate
// area of rhombus from given
// angle and side length
#include <bits/stdc++.h>
using namespace std;
 
#define RADIAN 0.01745329252
// Function to return the area of rhombus
// using one angle and side.
float Area_of_Rhombus(int a, int theta)
{
    float area = (a * a) * sin((RADIAN * theta));
    return area;
}
 
// Driver Code
int main()
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    float ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    printf("%0.2f", ans);
    return 0;
}
 
// This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java Program to calculate
// area of rhombus from given
// angle and side length
class GFG{
 
static final double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    System.out.printf("%.2f", ans);
}
}
 
// This code is contributed by Rajput-Ji
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 Program to calculate
# area of rhombus from given
# angle and side length
   
import math 
   
# Function to return the area of rhombus
# using one angle and side. 
def Area_of_Rhombus(a, theta): 
   
    area = (a**2) * math.sin(math.radians(theta))
   
    return area 
   
# Driver Code 
a = 4
theta = 60
   
# Function Call 
ans = Area_of_Rhombus(a, theta) 
   
# Print the final answer
print(round(ans, 2))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to calculate
// area of rhombus from given
// angle and side length
using System;
class GFG{
 
static readonly double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.Sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void Main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the readonly answer
    Console.Write("{0:F2}", ans);
}
}
 
// This code is contributed by Rajput-Ji
chevron_right

Output: 
13.86






 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Rajput-Ji

Article Tags :
Practice Tags :