Skip to content
Related Articles

Related Articles

Find the area of rhombus from given Angle and Side length
  • Last Updated : 07 Apr, 2021

Given two integers A and X, denoting the length of a side of a rhombus and an angle respectively, the task is to find the area of the rhombus.

A rhombus is a quadrilateral having 4 sides of equal length, in which both the opposite sides are parallel, and opposite angles are equal.

Examples:

Input: A = 4, X = 60
Output: 13.86

Input: A = 4, X = 30
Output: 8.0



Approach:For a Rhombus ABCD having the length of a side a and an angle x, the area of triangle ABD can be calculated using Side-Angle-Side property of triangle by the following equation:

Area of Triangle ABD = 1/2 (a2) sin x
Area of Rhombus ABCD will be double the area of ABD triangle.

Therefore, Area of Rhombus ABCD = (a2) sin x

Below is the implementation of the above approach:

C++




// C++ Program to calculate
// area of rhombus from given
// angle and side length
#include <bits/stdc++.h>
using namespace std;
 
#define RADIAN 0.01745329252
// Function to return the area of rhombus
// using one angle and side.
float Area_of_Rhombus(int a, int theta)
{
    float area = (a * a) * sin((RADIAN * theta));
    return area;
}
 
// Driver Code
int main()
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    float ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    printf("%0.2f", ans);
    return 0;
}
 
// This code is contributed by Rajput-Ji

Java




// Java Program to calculate
// area of rhombus from given
// angle and side length
class GFG{
 
static final double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the final answer
    System.out.printf("%.2f", ans);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 Program to calculate
# area of rhombus from given
# angle and side length
   
import math 
   
# Function to return the area of rhombus
# using one angle and side. 
def Area_of_Rhombus(a, theta): 
   
    area = (a**2) * math.sin(math.radians(theta))
   
    return area 
   
# Driver Code 
a = 4
theta = 60
   
# Function Call 
ans = Area_of_Rhombus(a, theta) 
   
# Print the final answer
print(round(ans, 2))

C#




// C# Program to calculate
// area of rhombus from given
// angle and side length
using System;
class GFG{
 
static readonly double RADIAN = 0.01745329252;
   
// Function to return the area of rhombus
// using one angle and side.
static double Area_of_Rhombus(int a, int theta)
{
    double area = (a * a) * Math.Sin((RADIAN * theta));
    return area;
}
 
// Driver Code
public static void Main(String[] args)
{
    int a = 4;
    int theta = 60;
 
    // Function Call
    double ans = Area_of_Rhombus(a, theta);
 
    // Print the readonly answer
    Console.Write("{0:F2}", ans);
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript Program to calculate
// area of rhombus from given
// angle and side length
    
    
// Function to return the area of rhombus
// using one angle and side.
function Area_of_Rhombus(a, theta){
    
    var area = (a**2) * Math.sin(theta *Math.PI/180);
    
    return area ;
}
    
// Driver Code
a = 4
theta = 60
    
// Function Call
ans = Area_of_Rhombus(a, theta)
    
 // Print the final answer
document.write(Math.round(ans * 100) / 100);
 
</script>
Output: 
13.86

 

Time Complexity: O(1)
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :