Open In App

Find sum of a[i]%a[j] for all valid pairs

Improve
Improve
Like Article
Like
Save
Share
Report

Given an array arr[] of size N. The task is to find the sum of arr[i] % arr[j] for all valid pairs. Answer can be large. So, output answer modulo 1000000007
Examples: 
 

Input: arr[] = {1, 2, 3} 
Output:
(1 % 1) + (1 % 2) + (1 % 3) + (2 % 1) + (2 % 2) 
+ (2 % 3) + (3 % 1) + (3 % 2) + (3 % 3) = 5
Input: arr[] = {1, 2, 4, 4, 4} 
Output: 10 
 

 

Approach: Store the frequency of each element and run a nested loop on the frequency array and find the required answer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
#define mod (int)(1e9 + 7)
 
// Function to return the sum of (a[i] % a[j])
// for all valid pairs
int Sum_Modulo(int a[], int n)
{
    int max = *max_element(a, a + n);
 
    // To store the frequency of each element
    int cnt[max + 1] = { 0 };
 
    // Store the frequency of each element
    for (int i = 0; i < n; i++)
        cnt[a[i]]++;
 
    // To store the required answer
    long long ans = 0;
 
    // For all valid pairs
    for (int i = 1; i <= max; i++) {
        for (int j = 1; j <= max; j++) {
 
            // Update the count
            ans = ans + cnt[i] * cnt[j] * (i % j);
            ans = ans % mod;
        }
    }
 
    return (int)(ans);
}
 
// Driver code
int main()
{
    int a[] = { 1, 2, 3 };
    int n = sizeof(a) / sizeof(a[0]);
 
    cout << Sum_Modulo(a, n);
 
    return 0;
}


Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static int mod = (int)(1e9 + 7);
 
// Function to return the sum of (a[i] % a[j])
// for all valid pairs
static int Sum_Modulo(int a[], int n)
{
    int max = Arrays.stream(a).max().getAsInt();
 
    // To store the frequency of each element
    int []cnt=new int[max + 1];
 
    // Store the frequency of each element
    for (int i = 0; i < n; i++)
        cnt[a[i]]++;
 
    // To store the required answer
    long ans = 0;
 
    // For all valid pairs
    for (int i = 1; i <= max; i++)
    {
        for (int j = 1; j <= max; j++)
        {
 
            // Update the count
            ans = ans + cnt[i] *
                        cnt[j] * (i % j);
            ans = ans % mod;
        }
    }
 
    return (int)(ans);
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 1, 2, 3 };
    int n = a.length;
 
    System.out.println(Sum_Modulo(a, n));
}
}
 
// This code is contributed
// by PrinciRaj1992


Python3




# Python3 implementation of the approach
mod = 10**9 + 7
 
# Function to return the sum of
# (a[i] % a[j]) for all valid pairs
def Sum_Modulo(a, n):
 
    Max = max(a)
 
    # To store the frequency of each element
    cnt = [0 for i in range(Max + 1)]
 
    # Store the frequency of each element
    for i in a:
        cnt[i] += 1
 
    # To store the required answer
    ans = 0
 
    # For all valid pairs
    for i in range(1, Max + 1):
        for j in range(1, Max + 1):
 
            # Update the count
            ans = ans + cnt[i] * \
                        cnt[j] * (i % j)
            ans = ans % mod
 
    return ans
 
# Driver code
a = [1, 2, 3]
n = len(a)
 
print(Sum_Modulo(a, n))
 
# This code is contributed by Mohit Kumar


C#




// C# implementation of the approach
using System;
using System.Linq;
class GFG
{
     
static int mod = (int)(1e9 + 7);
 
// Function to return the sum of (a[i] % a[j])
// for all valid pairs
static int Sum_Modulo(int []a, int n)
{
    int max = a.Max();
 
    // To store the frequency of each element
    int []cnt = new int[max + 1];
 
    // Store the frequency of each element
    for (int i = 0; i < n; i++)
        cnt[a[i]]++;
 
    // To store the required answer
    long ans = 0;
 
    // For all valid pairs
    for (int i = 1; i <= max; i++)
    {
        for (int j = 1; j <= max; j++)
        {
 
            // Update the count
            ans = ans + cnt[i] *
                        cnt[j] * (i % j);
            ans = ans % mod;
        }
    }
    return (int)(ans);
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 1, 2, 3 };
    int n = a.Length;
 
    Console.WriteLine(Sum_Modulo(a, n));
}
}
 
// This code is contributed by 29AjayKumar


Javascript




<script>
 
// JavaScript implementation of the approach
 
let mod = 1e9 + 7
 
// Function to return the sum of (a[i] % a[j])
// for all valid pairs
function Sum_Modulo(a, n)
{
    let max = a.sort((a, b) => b - a)[0];
 
    // To store the frequency of each element
    let cnt = new Array(max + 1).fill(0);
 
    // Store the frequency of each element
    for (let i = 0; i < n; i++)
        cnt[a[i]]++;
 
    // To store the required answer
    let ans = 0;
 
    // For all valid pairs
    for (let i = 1; i <= max; i++) {
        for (let j = 1; j <= max; j++) {
 
            // Update the count
            ans = ans + cnt[i] * cnt[j] * (i % j);
            ans = ans % mod;
        }
    }
 
    return (ans);
}
 
// Driver code
 
let a = [1, 2, 3];
let n = a.length;
 
document.write(Sum_Modulo(a, n));
 
// This code is contributed by _saurabh_jaiswal
 
</script>


Output: 

5

 

Time Complexity: O(MAX2)

Auxiliary Space: O(MAX)



Last Updated : 12 Jul, 2022
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads