Given two integer N ans K, the task is to find sum of modulo K of first N natural numbers i.e 1%K + 2%K + ….. + N%K.
Examples :
Input : N = 10 and K = 2.
Output : 5
Sum = 1%2 + 2%2 + 3%2 + 4%2 + 5%2 + 6%2 +
7%2 + 8%2 + 9%2 + 10%2
= 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0 + 1 + 0
= 5.
Method 1:
Iterate a variable i from 1 to N, evaluate and add i%K.
Below is the implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
int findSum( int N, int K)
{
int ans = 0;
for ( int i = 1; i <= N; i++)
ans += (i % K);
return ans;
}
int main()
{
int N = 10, K = 2;
cout << findSum(N, K) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findSum( int N, int K)
{
int ans = 0 ;
for ( int i = 1 ; i <= N; i++)
ans += (i % K);
return ans;
}
static public void main(String[] args)
{
int N = 10 , K = 2 ;
System.out.println(findSum(N, K));
}
}
|
Python3
def findSum(N, K):
ans = 0 ;
for i in range ( 1 , N + 1 ):
ans + = (i % K);
return ans;
N = 10 ;
K = 2 ;
print (findSum(N, K));
|
C#
using System;
class GFG {
static int findSum( int N, int K)
{
int ans = 0;
for ( int i = 1; i <= N; i++)
ans += (i % K);
return ans;
}
static public void Main()
{
int N = 10, K = 2;
Console.WriteLine(findSum(N, K));
}
}
|
PHP
<?php
function findSum( $N , $K )
{
$ans = 0;
for ( $i = 1; $i <= $N ; $i ++)
$ans += ( $i % $K );
return $ans ;
}
$N = 10; $K = 2;
echo findSum( $N , $K ), "\n" ;
?>
|
Javascript
<script>
function findSum(N, K)
{
let ans = 0;
for (let i = 1; i <= N; i++)
ans += (i % K);
return ans;
}
let N = 10, K = 2;
document.write(findSum(N, K));
</script>
|
Output :
5
Time Complexity : O(N).
Auxiliary Space: O(1)
Method 2 :
Two cases arise in this method.
Case 1: When N < K, for each number i, N >= i >= 1, will give i as result when operate with modulo K. So, the required sum will be the sum of the first N natural number, N*(N+1)/2.
Case 2: When N >= K, then integers from 1 to K in natural number sequence will produce, 1, 2, 3, ….., K – 1, 0 as result when operate with modulo K. Similarly, from K + 1 to 2K, it will produce same result. So, the idea is to count how many numbers of times this sequence appears and multiply it with the sum of first K – 1 natural numbers.
Below is the implementation of this approach:
C++
#include <bits/stdc++.h>
using namespace std;
int findSum( int N, int K)
{
int ans = 0;
int y = N / K;
int x = N % K;
ans = (K * (K - 1) / 2) * y + (x * (x + 1)) / 2;
return ans;
}
int main()
{
int N = 10, K = 2;
cout << findSum(N, K) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findSum( int N, int K)
{
int ans = 0 ;
int y = N / K;
int x = N % K;
ans = (K * (K - 1 ) / 2 ) * y + (x * (x + 1 )) / 2 ;
return ans;
}
static public void main(String[] args)
{
int N = 10 , K = 2 ;
System.out.println(findSum(N, K));
}
}
|
Python3
def findSum(N, K):
ans = 0 ;
y = N / K;
x = N % K;
ans = ((K * (K - 1 ) / 2 ) * y +
(x * (x + 1 )) / 2 );
return int (ans);
N = 10 ;
K = 2 ;
print (findSum(N, K));
|
C#
using System;
class GFG {
static int findSum( int N, int K)
{
int ans = 0;
int y = N / K;
int x = N % K;
ans = (K * (K - 1) / 2) * y + (x * (x + 1)) / 2;
return ans;
}
static public void Main()
{
int N = 10, K = 2;
Console.WriteLine(findSum(N, K));
}
}
|
PHP
<?php
function findSum( $N , $K )
{
$ans = 0;
$y = $N / $K ;
$x = $N % $K ;
$ans = ( $K * ( $K - 1) / 2) * $y
+ ( $x * ( $x + 1)) / 2;
return $ans ;
}
$N = 10; $K = 2;
echo findSum( $N , $K ) ;
?>
|
Javascript
<script>
function findSum(N, K)
{
let ans = 0;
let y = N / K;
let x = N % K;
ans = (K * (K - 1) / 2) * y +
(x * (x + 1)) / 2;
return ans;
}
let N = 10;
let K = 2;
document.write(findSum(N, K));
</script>
|
Output :
5
Time Complexity : O(1).
Auxiliary Space: O(1)
If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
12 Sep, 2022
Like Article
Save Article