Skip to content
Related Articles

Related Articles

Improve Article

Find the Sub-array with sum closest to 0

  • Difficulty Level : Medium
  • Last Updated : 02 Jul, 2021

Given an array of both positive and negative numbers, the task is to find out the subarray whose sum is closest to 0. 
There can be multiple such subarrays, we need to output just 1 of them. 
Examples: 
 

Input : arr[] = {-1, 3, 2, -5, 4}
Output : 1, 3
Subarray from index 1 to 3 has sum closest to 0 i.e.
3 + 2 + -5 = 0

Input : {2, -5, 4, -6, 3} 
Output : 0, 2
2 + -5 + 4 = 1 closest to 0

Asked in : Microsoft
 

A Naive approach is to consider all subarrays one by one and update indexes of subarray with sum closest to 0. 
 

C++




// C++ program to find subarray with
// sum closest to 0
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the subarray
pair<int, int> findSubArray(int arr[], int n)
{
 
    int start, end, min_sum = INT_MAX;
 
    // Pick a starting point
    for (int i = 0; i < n; i++) {
 
        // Consider current starting point
        // as a subarray and update minimum
        // sum and subarray indexes
        int curr_sum = arr[i];
        if (min_sum > abs(curr_sum)) {
            min_sum = abs(curr_sum);
            start = i;
            end = i;
        }
 
        // Try all subarrays starting with i
        for (int j = i + 1; j < n; j++) {
            curr_sum = curr_sum + arr[j];
 
            // update minimum sum
            // and subarray indexes
            if (min_sum > abs(curr_sum)) {
                min_sum = abs(curr_sum);
                start = i;
                end = j;
            }
        }
    }
 
    // Return starting and ending indexes
    pair<int, int> p = make_pair(start, end);
    return p;
}
 
// Drivers code
int main()
{
    int arr[] = { 2, -5, 4, -6, -3 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    pair<int, int> point = findSubArray(arr, n);
    cout << "Subarray starting from ";
    cout << point.first << " to " << point.second;
    return 0;
}

Java




// Java program to find subarray with
// sum closest to 0
 
class GFG
{
 
    static class Pair
    {
 
        int first, second;
        public Pair(int first, int second)
        {
            this.first = first;
            this.second = second;
        }
 
    }
     
    // Function to find the subarray
    static Pair findSubArray(int arr[], int n)
    {
 
        int start = 0, end = 0, min_sum = Integer.MAX_VALUE;
 
        // Pick a starting point
        for (int i = 0; i < n; i++)
        {
 
            // Consider current starting point
            // as a subarray and update minimum
            // sum and subarray indexes
            int curr_sum = arr[i];
            if (min_sum > Math.abs(curr_sum))
            {
                min_sum = Math.abs(curr_sum);
                start = i;
                end = i;
            }
 
            // Try all subarrays starting with i
            for (int j = i + 1; j < n; j++)
            {
                curr_sum = curr_sum + arr[j];
 
                // update minimum sum
                // and subarray indexes
                if (min_sum > Math.abs(curr_sum))
                {
                    min_sum = Math.abs(curr_sum);
                    start = i;
                    end = j;
                }
            }
        }
 
        // Return starting and ending indexes
        Pair p = new Pair(start, end);
        return p;
    }
 
    // Drivers code
    public static void main(String[] args)
    {
        int arr[] = {2, -5, 4, -6, -3};
        int n = arr.length;
 
        Pair point = findSubArray(arr, n);
        System.out.println("Subarray starting from "
                + point.first + " to " + point.second);
    }
}
 
// This code has been contributed by 29AjayKumar

Python3




# Python 3 program to find subarray with
# sum closest to 0
import sys
 
# Function to find the subarray
def findSubArray(arr, n):
    min_sum = sys.maxsize
 
    # Pick a starting point
    for i in range(n):
         
        # Consider current starting point
        # as a subarray and update minimum
        # sum and subarray indexes
        curr_sum = arr[i]
        if (min_sum > abs(curr_sum)):
            min_sum = abs(curr_sum)
            start = i
            end = i
 
        # Try all subarrays starting with i
        for j in range(i + 1, n, 1):
            curr_sum = curr_sum + arr[j]
 
            # update minimum sum
            # and subarray indexes
            if (min_sum > abs(curr_sum)):
                min_sum = abs(curr_sum)
                start = i
                end = j
 
    # Return starting and ending indexes
    p = [start, end]
    return p
 
# Driver Code
if __name__ == '__main__':
    arr = [2, -5, 4, -6, -3]
    n = len(arr)
 
    point = findSubArray(arr, n)
    print("Subarray starting from ", end = "")
    print(point[0], "to", point[1])
 
# This code is contributed by
# Surendra_Gangwar

C#




// C# program to find subarray with
// sum closest to 0
using System;
     
class GFG
{
 
    public class Pair
    {
 
        public int first, second;
        public Pair(int first, int second)
        {
            this.first = first;
            this.second = second;
        }
 
    }
     
    // Function to find the subarray
    static Pair findSubArray(int []arr, int n)
    {
 
        int start = 0, end = 0, min_sum = int.MaxValue;
 
        // Pick a starting point
        for (int i = 0; i < n; i++)
        {
 
            // Consider current starting point
            // as a subarray and update minimum
            // sum and subarray indexes
            int curr_sum = arr[i];
            if (min_sum > Math.Abs(curr_sum))
            {
                min_sum = Math.Abs(curr_sum);
                start = i;
                end = i;
            }
 
            // Try all subarrays starting with i
            for (int j = i + 1; j < n; j++)
            {
                curr_sum = curr_sum + arr[j];
 
                // update minimum sum
                // and subarray indexes
                if (min_sum > Math.Abs(curr_sum))
                {
                    min_sum = Math.Abs(curr_sum);
                    start = i;
                    end = j;
                }
            }
        }
 
        // Return starting and ending indexes
        Pair p = new Pair(start, end);
        return p;
    }
 
    // Drivers code
    public static void Main(String[] args)
    {
        int []arr = {2, -5, 4, -6, -3};
        int n = arr.Length;
 
        Pair point = findSubArray(arr, n);
        Console.WriteLine("Subarray starting from "
                + point.first + " to " + point.second);
    }
}
 
// This code is contributed by Princi Singh

Javascript




<script>
 
// JavaScript program to find subarray with
// sum closest to 0
 
// Function to find the subarray
function findSubArray(arr, n) {
 
    let start, end, min_sum = Number.MAX_SAFE_INTEGER;
 
    // Pick a starting point
    for (let i = 0; i < n; i++) {
 
        // Consider current starting point
        // as a subarray and update minimum
        // sum and subarray indexes
        let curr_sum = arr[i];
        if (min_sum > Math.abs(curr_sum)) {
            min_sum = Math.abs(curr_sum);
            start = i;
            end = i;
        }
 
        // Try all subarrays starting with i
        for (let j = i + 1; j < n; j++) {
            curr_sum = curr_sum + arr[j];
 
            // update minimum sum
            // and subarray indexes
            if (min_sum > Math.abs(curr_sum)) {
                min_sum = Math.abs(curr_sum);
                start = i;
                end = j;
            }
        }
    }
 
    // Return starting and ending indexes
    let p = [start, end];
    return p;
}
 
// Drivers code
 
let arr = [2, -5, 4, -6, -3];
let n = arr.length;
 
let point = findSubArray(arr, n);
document.write("Subarray starting from ");
document.write(point[0] + " to " + point[1]);
 
</script>

Output:  

Subarray starting from 0 to 2

Time Complexity: O(n2)
An Efficient method is to perform following steps:-
 



  1. Maintain a Prefix sum array . Also maintain indexes in the prefix sum array.
  2. Sort the prefix sum array on the basis of sum.
  3. Find the two elements in a prefix sum array with minimum difference. 
     
i.e.  Find min(pre_sum[i] - pre_sum[i-1]) 
  1. Return indexes of pre_sum with minimum difference.
  2. Subarray with (lower_index+1, upper_index) will have the sum closest to 0.
  3. Taking lower_index+1 because on subtracting value at lower_index we get the sum closest to 0. That’s why lower_index need not to be included.

C++




// C++ program to find subarray with sum
// closest to 0
#include <bits/stdc++.h>
using namespace std;
 
struct prefix {
    int sum;
    int index;
};
 
// Sort on the basis of sum
bool comparison(prefix a, prefix b)
{
    return a.sum < b.sum;
}
 
// Returns subarray with sum closest to 0.
pair<int, int> findSubArray(int arr[], int n)
{
    int start, end, min_diff = INT_MAX;
 
    prefix pre_sum[n + 1];
 
    // To consider the case of subarray starting
    // from beginning of the array
    pre_sum[0].sum = 0;
    pre_sum[0].index = -1;
 
    // Store prefix sum with index
    for (int i = 1; i <= n; i++) {
        pre_sum[i].sum = pre_sum[i-1].sum + arr[i-1];
        pre_sum[i].index = i - 1;
    }
 
    // Sort on the basis of sum
    sort(pre_sum, pre_sum + (n + 1), comparison);
 
    // Find two consecutive elements with minimum difference
    for (int i = 1; i <= n; i++) {
        int diff = pre_sum[i].sum - pre_sum[i-1].sum;
 
        // Update minimum difference
        // and starting and ending indexes
        if (min_diff > diff) {
            min_diff = diff;
            start = pre_sum[i-1].index;
            end = pre_sum[i].index;
        }
    }
 
    // Return starting and ending indexes
    pair<int, int> p = make_pair(start + 1, end);
    return p;
}
 
// Drivers code
int main()
{
    int arr[] = { 2, 3, -4, -1, 6 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    pair<int, int> point = findSubArray(arr, n);
    cout << "Subarray starting from ";
    cout << point.first << " to " << point.second;
 
    return 0;
}

Java




// Java program to find subarray with sum
// closest to 0
import java.util.*;
 
class Prefix
{
    int sum, index;
}
 
class Pair
{
    int first, second;
    Pair(int a, int b)
    {
        first = a;
        second = b;
    }
}
 
class GFG{
 
// Returns subarray with sum closest to 0.
static Pair findSubArray(int arr[], int n)
{
    int start = -1, end = -1,
     min_diff = Integer.MAX_VALUE;
 
    Prefix pre_sum[] = new Prefix[n + 1];
    for(int i = 0; i < n + 1; i++)
        pre_sum[i] = new Prefix();
         
    // To consider the case of subarray starting
    // from beginning of the array
    pre_sum[0].sum = 0;
    pre_sum[0].index = -1;
 
    // Store prefix sum with index
    for(int i = 1; i <= n; i++)
    {
        pre_sum[i].sum = pre_sum[i - 1].sum +
                             arr[i - 1];
        pre_sum[i].index = i - 1;
    }
 
    // Sort on the basis of sum
    Arrays.sort(pre_sum, ((a, b) -> a.sum - b.sum));
 
    // Find two consecutive elements with minimum
    // difference
    for(int i = 1; i <= n; i++)
    {
        int diff = pre_sum[i].sum -
                   pre_sum[i - 1].sum;
 
        // Update minimum difference
        // and starting and ending indexes
        if (min_diff > diff)
        {
            min_diff = diff;
            start = pre_sum[i - 1].index;
            end = pre_sum[i].index;
        }
    }
 
    // Return starting and ending indexes
    Pair p = new Pair(start + 1, end);
    return p;
}
 
// Driver code
public static void main(String[] args)
{
    int arr[] = { 2, 3, -4, -1, 6 };
    int n = arr.length;
 
    Pair point = findSubArray(arr, n);
     
    System.out.print("Subarray starting from ");
    System.out.println(point.first + " to " +
                       point.second);
}
}
 
// This code is contributed by jrishabh99

Python3




# Python3 program to find subarray
# with sum closest to 0
class prefix:
     
    def __init__(self, sum, index):
        self.sum = sum
        self.index = index
 
# Returns subarray with sum closest to 0.
def findSubArray(arr, n):
 
    start, end, min_diff = None, None, float('inf')
 
    pre_sum = [None] * (n + 1)
 
    # To consider the case of subarray
    # starting from beginning of the array
    pre_sum[0] = prefix(0, -1)
 
    # Store prefix sum with index
    for i in range(1, n + 1):
        pre_sum[i] = prefix(pre_sum[i - 1].sum +
                                arr[i - 1], i - 1)
 
    # Sort on the basis of sum
    pre_sum.sort(key = lambda x: x.sum)
 
    # Find two consecutive elements
    # with minimum difference
    for i in range(1, n + 1):
        diff = pre_sum[i].sum - pre_sum[i - 1].sum
 
        # Update minimum difference
        # and starting and ending indexes
        if min_diff > diff:
            min_diff = diff
            start = pre_sum[i - 1].index
            end = pre_sum[i].index
         
    # Return starting and ending indexes
    return (start + 1, end)
 
# Driver code
if __name__ == "__main__":
 
    arr = [2, 3, -4, -1, 6]
    n = len(arr)
 
    point = findSubArray(arr, n)
    print("Subarray starting from",
           point[0], "to", point[1])
 
# This code is contributed by Rituraj Jain

Javascript




<script>
// Javascript program to find subarray with sum
// closest to 0
class Prefix
{
    constructor()
    {
        this.sum = 0;
        this.index = 0;
    }
}
 
class Pair
{
    constructor(a, b)
    {
        this.first = a;
        this.second = b;
    }
}
 
// Returns subarray with sum closest to 0.
function findSubArray(arr, n)
{
    let start = -1, end = -1,
     min_diff = Number.MAX_VALUE;
   
    let pre_sum = new Array(n + 1);
    for(let i = 0; i < n + 1; i++)
        pre_sum[i] = new Prefix();
           
    // To consider the case of subarray starting
    // from beginning of the array
    pre_sum[0].sum = 0;
    pre_sum[0].index = -1;
   
    // Store prefix sum with index
    for(let i = 1; i <= n; i++)
    {
        pre_sum[i].sum = pre_sum[i - 1].sum +
                             arr[i - 1];
        pre_sum[i].index = i - 1;
    }
   
    // Sort on the basis of sum
    pre_sum.sort(function(a, b) {return a.sum - b.sum});
   
    // Find two consecutive elements with minimum
    // difference
    for(let i = 1; i <= n; i++)
    {
        let diff = pre_sum[i].sum -
                   pre_sum[i - 1].sum;
   
        // Update minimum difference
        // and starting and ending indexes
        if (min_diff > diff)
        {
            min_diff = diff;
            start = pre_sum[i - 1].index;
            end = pre_sum[i].index;
        }
    }
   
    // Return starting and ending indexes
    let p = new Pair(start + 1, end);
    return p;
}
 
// Driver code
let arr = [2, 3, -4, -1, 6 ];
let n = arr.length;
let point = findSubArray(arr, n);
document.write("Subarray starting from ");
document.write(point.first + " to " +
                   point.second);
 
// This code is contributed by rag2127
</script>

Output: 
 

Subarray starting from 0 to 3

Time Complexity: O(n log n)
Reference: 
https://www.careercup.com/question?id=14583859
This article is contributed by Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :