Find smallest Substring to be rearranged to make String lexicographically sorted
Given a string S, the task is to find out the length of the smallest substring of S that needs to be rearranged so that all the characters of the string S are in lexicographical order.
Examples:
Input: S = “aabbace”
Output: 3
Explanation: Rearranging “bba” to be “abb”.
S becomes “aaabbce” which is in lexicographical order.Input: S = “abez”
Output: 0
Approach: Follow the steps to solve the problem:
- Compare each character S[i] from 0 to N-2 with all it’s succeeding characters.
- Once we find a lexicographically smaller character than the previous one,
- We store the index of the last character in end if it’s index position is maximum and
- The preceding character in start if it’s index position is minimum and
- Also update ans which is our required string length that needs to be modified.
- Add 1 to the difference of end and start because it is 0-indexed.
- If the string is already arranged in lexicographical order, return 0.
Below is the implementation for the above approach:
C++
// C++ code for the above approach: #include <bits/stdc++.h> using namespace std; int smallestsubstring(string s) { int n = s.size(), ans = 0, start = INT_MAX, end = INT_MIN; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) if ((int)s[j] < (int)s[i]) { start = min(start, i); end = max(end, j); ans = end - start + 1; } } return ans; } // Drivers code int main() { string s = "aabbace"; // Function Call cout << smallestsubstring(s); return 0; }
Java
// JAVA code for the above approach: import java.util.*; class GFG { static int smallestsubstring(String s) { int n = s.length(), ans = 0, start = Integer.MAX_VALUE, end = Integer.MIN_VALUE; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) if ((int)s.charAt(j) < (int)s.charAt(i)) { start = Math.min(start, i); end = Math.max(end, j); ans = end - start + 1; } } return ans; } // Drivers code public static void main(String[] args) { String s = "aabbace"; // Function Call System.out.println(smallestsubstring(s)); } } // This code is contributed by Taranpreet
Python3
# Python code for the above approach: def smallestsubstring(s): n = len(s) ans = 0 start = 2147483647 end = -2147483647 - 1 for i in range(0,n-1): for j in range(i+1,n): if (s[j] < s[i]): start = min(start, i) end = max(end, j) ans = end - start + 1 return ans # Drivers code s = "aabbace" # // Function Call print(smallestsubstring(s)) # This code is contributed by ksam24000
C#
// C# code for the above approach: using System; public class GFG { static int smallestsubstring(String s) { int n = s.Length, ans = 0, start = Int32.MaxValue, end = Int32.MinValue; for (int i = 0; i < n - 1; i++) { for (int j = i + 1; j < n; j++) if ((int)s[j] < (int)s[i]) { start = Math.Min(start, i); end = Math.Max(end, j); ans = end - start + 1; } } return ans; } // Drivers code static public void Main() { String s = "aabbace"; // Function Call Console.WriteLine(smallestsubstring(s)); } } // This code is contributed by Rohit Pradhan
Javascript
<script> // JavaScript code for the above approach function smallestsubstring(s) { let n = s.length, ans = 0, start = Number.MAX_VALUE; end = Number.MIN_VALUE for (let i = 0; i < n - 1; i++) { for (let j = i + 1; j < n; j++) if (s[j] < s[i]) { start = Math.min(start, i); end = Math.max(end, j); ans = end - start + 1; } } return ans; } // Driver Function let s = "aabbace"; // Function Call document.write(smallestsubstring(s)); // This code is contributed by sanjoy_62. </script>
Output
3
Time Complexity: O(N2)
Auxiliary Space: O(1)
Please Login to comment...