Find smallest possible Number from a given large Number with same count of digits

Given a number K of length N, the task is to find the smallest possible number that can be formed from K of N digits by swapping the digits any number of times.

Examples:

Input: N = 15, K = 325343273113434
Output: 112233333344457
Explanation:
The smallest number possible after swapping the digits of the given number is 112233333344457



Input: N = 7, K = 3416781
Output: 1134678

Approach: The idea is to use Hashing. To implement the hash, an array arr[] of size 10 is created. The given number is iterated and the count of occurrence of every digit is stored in the hash at the corresponding index. Then iterate the hash array and print the ith digit according to its frequency. The output will be the smallest required number of N digits.

Below is the implementation of the above approach:

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
  
#include <iostream>
using namespace std;
  
// Function for finding the smallest
// possible number after swapping
// the digits any number of times
string smallestPoss(string s, int n)
{
    // Variable to store the final answer
    string ans = "";
  
    // Array to store the count of
    // occurrence of each digit
    int arr[10] = { 0 };
  
    // Loop to calculate the number
    // of occurrences of every digit
    for (int i = 0; i < n; i++) {
        arr[s[i] - 48]++;
    }
  
    // Loop to get smallest number
    for (int i = 0; i < 10; i++) {
        for (int j = 0; j < arr[i]; j++)
            ans = ans + to_string(i);
    }
  
    // Returning the answer
    return ans;
}
  
// Driver code
int main()
{
    int N = 15;
    string K = "325343273113434";
  
    cout << smallestPoss(K, N);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach
class GFG
{
  
// Function for finding the smallest
// possible number after swapping
// the digits any number of times
static String smallestPoss(String s, int n)
{
    // Variable to store the final answer
    String ans = "";
  
    // Array to store the count of
    // occurrence of each digit
    int arr[] = new int[10];
  
    // Loop to calculate the number
    // of occurrences of every digit
    for (int i = 0; i < n; i++)
    {
        arr[s.charAt(i) - 48]++;
    }
  
    // Loop to get smallest number
    for (int i = 0; i < 10; i++)
    {
        for (int j = 0; j < arr[i]; j++)
            ans = ans + String.valueOf(i);
    }
  
    // Returning the answer
    return ans;
}
  
// Driver code
public static void main(String[] args)
{
    int N = 15;
    String K = "325343273113434";
  
    System.out.print(smallestPoss(K, N));
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the above approach
  
# Function for finding the smallest
# possible number after swapping
# the digits any number of times
def smallestPoss(s, n):
      
    # Variable to store the final answer
    ans = "";
  
    # Array to store the count of
    # occurrence of each digit
    arr = [0]*10;
  
    # Loop to calculate the number
    # of occurrences of every digit
    for i in range(n):
        arr[ord(s[i]) - 48] += 1;
      
    # Loop to get smallest number
    for i in range(10):
        for j in range(arr[i]):
            ans = ans + str(i);
      
    # Returning the answer
    return ans;
  
# Driver code
if __name__ == '__main__':
    N = 15;
    K = "325343273113434";
  
    print(smallestPoss(K, N));
  
# This code is contributed by 29AjayKumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach
using System;
  
class GFG
{
  
// Function for finding the smallest
// possible number after swapping
// the digits any number of times
static String smallestPoss(String s, int n)
{
    // Variable to store the readonly answer
    String ans = "";
  
    // Array to store the count of
    // occurrence of each digit
    int []arr = new int[10];
  
    // Loop to calculate the number
    // of occurrences of every digit
    for (int i = 0; i < n; i++)
    {
        arr[s[i] - 48]++;
    }
  
    // Loop to get smallest number
    for (int i = 0; i < 10; i++)
    {
        for (int j = 0; j < arr[i]; j++)
            ans = ans + String.Join("",i);
    }
  
    // Returning the answer
    return ans;
}
  
// Driver code
public static void Main(String[] args)
{
    int N = 15;
    String K = "325343273113434";
  
    Console.Write(smallestPoss(K, N));
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

112233333344457

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : princiraj1992, 29AjayKumar