Skip to content
Related Articles

Related Articles

Find smallest number with given digits and sum of digits

Improve Article
Save Article
  • Difficulty Level : Easy
  • Last Updated : 03 Sep, 2021
Improve Article
Save Article

Given two positive integers P and Q, find the minimum integer containing only digits P and Q such that the sum of the digits of the integer is N.

Example:

Input: N = 11, P = 4, Q = 7 
Output: 47
Explanation: There are two possible integers that can be formed from 4 and 7 such that their sum is 11 i.e. 47 and 74. Since we need to find the minimum possible value, 47 is the required answer.

Input: N = 11, P = 9, Q = 7
Output: Not Possible 
Explanation: It is not possible to create an integer using digits 7 and 9 such that their sum is 11.   

 

Efficient Approach: Let’s consider P is greater than or equal to Q, count_P denotes the number of occurrences of P and count_Q denoted the number of occurrences of Q in the resulting integer. So, the question can be represented in the form of an equation (P * count_P) + (Q * count_Q) = N, and in order to minimize the count of digits in the resulting integer  count_P + count_Q should be as minimum as possible. It can be observed that since P >= Q, the maximum possible value of count_P that satisfies (P * count_P) + (Q * count_Q) = N will be the most optimal choice. Below are the steps for the above approach :

  1. Initialize count_P and count_Q as 0.
  2. If N is divisible by P, count_P = N/P and N=0.
  3. If N is not divisible by P, subtract Q from N and increment count_Q by 1.
  4. Repeat steps number 2 and 3 until N is greater than 0.
  5. If N != 0, it is not possible to generate the integer that satisfies the required conditions. Else the resulting integer will be count_Q times Q followed by count_P times P.

Below is the implementation of the above approach:

C++




// C++ Program of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the minimum
// integer having only digits P and
// Q and the sum of digits as N
void printMinInteger(int P, int Q, int N)
{
    // If Q is greater that P then
    // swap the values of P and Q
    if (Q > P) {
        swap(P, Q);
    }
 
    // If P and Q are both zero or
    // if Q is zero and N is not
    // divisible by P then there
    // is no possible integer which
    // satisfies the given conditions
    if (Q == 0 && (P == 0 || N % P != 0)) {
        cout << "Not Possible";
        return;
    }
 
    int count_P = 0, count_Q = 0;
 
    // Loop to find the maximum value
    // of count_P that also satisfy
    // P*count_P + Q*count_Q = N
    while (N > 0) {
        if (N % P == 0) {
            count_P += N / P;
            N = 0;
        }
        else {
            N = N - Q;
            count_Q++;
        }
    }
 
    // If N is 0, their is a valid
    // integer possible that satisfies
    // all the requires conditions
    if (N == 0) {
 
        // Print Answer
        for (int i = 0; i < count_Q; i++)
            cout << Q;
        for (int i = 0; i < count_P; i++)
            cout << P;
    }
    else {
        cout << "Not Possible";
    }
}
 
// Driver Code
int main()
{
    int N = 32;
    int P = 7;
    int Q = 4;
 
    // Function Call
    printMinInteger(P, Q, N);
 
    return 0;
}

Java




// Java program for the above approach
import java.io.*;
 
class GFG {
 
// Function to print the minimum
// integer having only digits P and
// Q and the sum of digits as N
static void printMinInteger(int P, int Q, int N)
{
   
    // If Q is greater that P then
    // swap the values of P and Q
    if (Q > P) {
        int temp;
        temp = P;
        P = Q;
        Q = temp;
    }
 
    // If P and Q are both zero or
    // if Q is zero and N is not
    // divisible by P then there
    // is no possible integer which
    // satisfies the given conditions
    if (Q == 0 && (P == 0 || N % P != 0)) {
        System.out.println("Not Possible");
        return;
    }
 
    int count_P = 0, count_Q = 0;
 
    // Loop to find the maximum value
    // of count_P that also satisfy
    // P*count_P + Q*count_Q = N
    while (N > 0) {
        if (N % P == 0) {
            count_P += N / P;
            N = 0;
        }
        else {
            N = N - Q;
            count_Q++;
        }
    }
 
    // If N is 0, their is a valid
    // integer possible that satisfies
    // all the requires conditions
    if (N == 0) {
 
        // Print Answer
        for (int i = 0; i < count_Q; i++)
            System.out.print(Q);
        for (int i = 0; i < count_P; i++)
            System.out.print(P);
    }
    else {
        System.out.println("Not Possible");
    }
}
 
// Driver code
public static void main(String[] args)
{
    int N = 32;
    int P = 7;
    int Q = 4;
 
    // Function Call
    printMinInteger(P, Q, N);
}
}
 
// This code is contributed by code_hunt.

Python3




# Python3 program for the above approach
 
# Function to print minimum
# integer having only digits P and
# Q and the sum of digits as N
def printMinInteger(P, Q, N):
     
    # If Q is greater that P then
    # swap the values of P and Q
    if (Q > P):
        t = P
        P = Q
        Q = t
 
    # If P and Q are both zero or
    # if Q is zero and N is not
    # divisible by P then there
    # is no possible integer which
    # satisfies the given conditions
    if (Q == 0 and (P == 0 or N % P != 0)):
        print("Not Possible")
        return
     
    count_P = 0
    count_Q = 0
 
    # Loop to find the maximum value
    # of count_P that also satisfy
    # P*count_P + Q*count_Q = N
    while (N > 0):
        if (N % P == 0):
            count_P += N / P
            N = 0
        else:
            N = N - Q
            count_Q += 1
         
    # If N is 0, their is a valid
    # integer possible that satisfies
    # all the requires conditions
    if (N == 0):
         
        # Print Answer
        for i in range(count_Q):
            print(Q, end = "")
        for i in range(int(count_P)):
            print(P, end = "")
    else:
        print("Not Possible")
     
# Driver Code
N = 32
P = 7
Q = 4
 
# Function Call
printMinInteger(P, Q, N)
 
# This code is contributed by code_hunt

C#




// C# program for the above approach
using System;
 
public class GFG {
 
// Function to print the minimum
// integer having only digits P and
// Q and the sum of digits as N
static void printMinint(int P, int Q, int N)
{
   
    // If Q is greater that P then
    // swap the values of P and Q
    if (Q > P) {
        int temp;
        temp = P;
        P = Q;
        Q = temp;
    }
 
    // If P and Q are both zero or
    // if Q is zero and N is not
    // divisible by P then there
    // is no possible integer which
    // satisfies the given conditions
    if (Q == 0 && (P == 0 || N % P != 0)) {
        Console.WriteLine("Not Possible");
        return;
    }
 
    int count_P = 0, count_Q = 0;
 
    // Loop to find the maximum value
    // of count_P that also satisfy
    // P*count_P + Q*count_Q = N
    while (N > 0) {
        if (N % P == 0) {
            count_P += N / P;
            N = 0;
        }
        else {
            N = N - Q;
            count_Q++;
        }
    }
 
    // If N is 0, their is a valid
    // integer possible that satisfies
    // all the requires conditions
    if (N == 0) {
 
        // Print Answer
        for (int i = 0; i < count_Q; i++)
            Console.Write(Q);
        for (int i = 0; i < count_P; i++)
            Console.Write(P);
    }
    else {
        Console.WriteLine("Not Possible");
    }
}
 
// Driver code
public static void Main(String[] args)
{
    int N = 32;
    int P = 7;
    int Q = 4;
 
    // Function Call
    printMinint(P, Q, N);
}
}
 
// This code contributed by shikhasingrajput

Javascript




<script>
// Javascript Program of the above approach
 
// Function to print the minimum
// integer having only digits P and
// Q and the sum of digits as N
function printMinInteger(P, Q, N) {
  // If Q is greater that P then
  // swap the values of P and Q
  if (Q > P) {
    swap(P, Q);
  }
 
  // If P and Q are both zero or
  // if Q is zero and N is not
  // divisible by P then there
  // is no possible integer which
  // satisfies the given conditions
  if (Q == 0 && (P == 0 || N % P != 0)) {
    document.write("Not Possible");
    return;
  }
 
  let count_P = 0,
    count_Q = 0;
 
  // Loop to find the maximum value
  // of count_P that also satisfy
  // P*count_P + Q*count_Q = N
  while (N > 0) {
    if (N % P == 0) {
      count_P += Math.floor(N / P);
      N = 0;
    } else {
      N = N - Q;
      count_Q++;
    }
  }
 
  // If N is 0, their is a valid
  // integer possible that satisfies
  // all the requires conditions
  if (N == 0) {
    // Print Answer
    for (let i = 0; i < count_Q; i++) document.write(Q);
    for (let i = 0; i < count_P; i++) document.write(P);
  } else {
    document.write("Not Possible");
  }
}
 
// Driver Code
let N = 32;
let P = 7;
let Q = 4;
 
// Function Call
printMinInteger(P, Q, N);
 
// This code is contributed by gfgking.
</script>

Output

47777

Time Complexity: O(N)
Space Complexity: O(1)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!