Find Second largest element in an array | Set 2
Given an array arr[] consisting of N integers, the task is to find the second largest element in the given array using N+log2(N) – 2 comparisons.
Examples:
Input : arr[] = {22, 33, 14, 55, 100, 12}
Output : 55Input : arr[] = {35, 23, 12, 35, 19, 100}
Output : 35
Sorting and Two-Traversal Approach: Refer to Find Second largest element in an array for the solutions using Sorting as well as traversing the array twice.
Efficient Approach:
Follow the steps below to solve the problem:
- Find the largest element from the given array and keep track of all the elements compared with the largest element.
- Split the current array into two equal length subarrays.
- For each subarray, recursively find the largest element, and return an array in which the first index contains the length of this array, second index element contains the largest element and the remaining array contains the elements with which the largest element has been compared.
- Now, from the two arrays returned by both the subarrays, compare the largest element of both the subarrays and return the array that contains the largest of the two.
- The final array returned by the findLargest() contains its size in the first index, the largest element of the array at the second index, and the elements compared with the largest element in the remaining indices. Repeat the above steps using the findLargest() to find the second largest element of the array from the list of compared elements.
Analysis Of Algorithm:
It is clearly visible from the algorithm that the time complexity of the findLargest() algorithm is O(N) [N: size of the array]
Hence, (N-1) comparisons are performed.
Now, the size of the array returned by findLargest() is log2(N) + 2, out of which log2(N) elements are the ones with which the largest element is compared.
Hence, to find the second largest element, the largest among these log2(N) elements is calculated using log2(N) – 1 comparisons.Therefore, the total number of comparisons = N – 1 + log2(N) – 1 = N + log2(N) – 2
Below is the implementation of the above approach:
C++
// C++ program to implement // the above approach #include <bits/stdc++.h> using namespace std; // Function to find the largest // element in the array arr[] vector< int > findLargest( int beg, int end, vector< int > arr, int n) { // Base Condition if (beg == end) { // Initialize an empty list vector< int > compared(n, 0); compared[0] = 1; compared[1] = arr[beg]; return compared; } // Divide the array into two equal // length subarrays and recursively // find the largest among the two vector< int > compared1 = findLargest( beg, (beg + end) / 2, arr, n); vector< int > compared2 = findLargest( (beg + end) / 2 + 1, end, arr, n); if (compared1[1] > compared2[1]) { int k = compared1[0] + 1; // Store length of compared1[] // in the first index compared1[0] = k; // Store the maximum element compared1[k] = compared2[1]; // Return compared1 which // contains the maximum element return compared1; } else { int k = compared2[0] + 1; // Store length of compared2[] // in the first index compared2[0] = k; // Store the maximum element compared2[k] = compared1[1]; // Return compared2[] which // contains the maximum element return compared2; } } // Function to print the second largest // element in the array arr[] void findSecondLargest( int end, vector< int > arr) { // Find the largest element in arr[] vector< int > compared1 = findLargest( 0, end - 1, arr, end); // Find the second largest element // in arr[] vector< int > compared2 = findLargest( 2, compared1[0] + 2, compared1, compared1[0]); // Print the second largest element cout << compared2[1]; } // Driver code int main() { int N = 10; vector< int > arr{ 20, 1990, 12, 1110, 1, 59, 12, 15, 120, 1110}; findSecondLargest(N, arr); return 0; } // This code is contributed by divyeshrabadiya07 |
Java
// Java program to implement // the above approach import java.util.*; class GFG{ // Function to find the largest // element in the array arr[] static int [] findLargest( int beg, int end, int []arr, int n) { // Base Condition if (beg == end) { // Initialize an empty list int []compared = new int [n]; compared[ 0 ] = 1 ; compared[ 1 ] = arr[beg]; return compared; } // Divide the array into two equal // length subarrays and recursively // find the largest among the two int []compared1 = findLargest(beg, (beg + end) / 2 , arr, n); int []compared2 = findLargest((beg + end) / 2 + 1 , end, arr, n); if (compared1[ 1 ] > compared2[ 1 ]) { int k = compared1[ 0 ] + 1 ; // Store length of compared1[] // in the first index compared1[ 0 ] = k; // Store the maximum element compared1[k] = compared2[ 1 ]; // Return compared1 which // contains the maximum element return compared1; } else { int k = compared2[ 0 ] + 1 ; // Store length of compared2[] // in the first index compared2[ 0 ] = k; // Store the maximum element compared2[k] = compared1[ 1 ]; // Return compared2[] which // contains the maximum element return compared2; } } // Function to print the second largest // element in the array arr[] static void findSecondLargest( int end, int []arr) { // Find the largest element in arr[] int []compared1 = findLargest( 0 , end - 1 , arr, end); // Find the second largest element // in arr[] int []compared2 = findLargest( 2 , compared1[ 0 ] + 2 , compared1, compared1[ 0 ]); // Print the second largest element System.out.print(compared2[ 1 ]); } // Driver code public static void main(String[] args) { int N = 10 ; int []arr ={ 20 , 1990 , 12 , 1110 , 1 , 59 , 12 , 15 , 120 , 1110 }; findSecondLargest(N, arr); } } // This code is contributed by gauravrajput1 |
Python3
# Python3 Program to implement # the above approach # Function to find the largest # element in the array arr[] def findLargest(beg, end, arr, n): # Base Condition if (beg = = end): # Initialize an empty list compared = [ 0 ] * n compared[ 0 ] = 1 compared[ 1 ] = arr[beg] return compared # Divide the array into two equal # length subarrays and recursively # find the largest among the two compared1 = findLargest(beg, (beg + end) / / 2 , arr, n) compared2 = findLargest((beg + end) / / 2 + 1 , end, arr, n) if (compared1[ 1 ] > compared2[ 1 ]): k = compared1[ 0 ] + 1 # Store length of compared1[] # in the first index compared1[ 0 ] = k # Store the maximum element compared1[k] = compared2[ 1 ] # Return compared1 which # contains the maximum element return compared1 else : k = compared2[ 0 ] + 1 # Store length of compared2[] # in the first index compared2[ 0 ] = k # Store the maximum element compared2[k] = compared1[ 1 ] # Return compared2[] which # contains the maximum element return compared2 # Function to print the second largest # element in the array arr[] def findSecondLargest(end, arr): # Find the largest element in arr[] compared1 = findLargest( 0 , end - 1 , arr, end) # Find the second largest element # in arr[] compared2 = findLargest( 2 , compared1[ 0 ] + 2 , compared1, compared1[ 0 ]) # Print the second largest element print (compared2[ 1 ]) # Driver Code N = 10 arr = [ 20 , 1990 , 12 , 1110 , 1 , 59 , 12 , 15 , 120 , 1110 ] findSecondLargest(N, arr) |
C#
// C# program to implement // the above approach using System; class GFG{ // Function to find the largest // element in the array arr[] static int [] findLargest( int beg, int end, int []arr, int n) { // Base Condition if (beg == end) { // Initialize an empty list int []compared = new int [n]; compared[0] = 1; compared[1] = arr[beg]; return compared; } // Divide the array into two equal // length subarrays and recursively // find the largest among the two int []compared1 = findLargest(beg, (beg + end) / 2, arr, n); int []compared2 = findLargest((beg + end) / 2 + 1, end, arr, n); if (compared1[1] > compared2[1]) { int k = compared1[0] + 1; // Store length of compared1[] // in the first index compared1[0] = k; // Store the maximum element compared1[k] = compared2[1]; // Return compared1 which // contains the maximum element return compared1; } else { int k = compared2[0] + 1; // Store length of compared2[] // in the first index compared2[0] = k; // Store the maximum element compared2[k] = compared1[1]; // Return compared2[] which // contains the maximum element return compared2; } } // Function to print the second largest // element in the array arr[] static void findSecondLargest( int end, int []arr) { // Find the largest element in arr[] int []compared1 = findLargest(0, end - 1, arr, end); // Find the second largest element // in arr[] int []compared2 = findLargest(2, compared1[0] + 2, compared1, compared1[0]); // Print the second largest element Console.WriteLine(compared2[1]); } // Driver code static public void Main () { int N = 10; int []arr = { 20, 1990, 12, 1110, 1, 59, 12, 15, 120, 1110 }; findSecondLargest(N, arr); } } // This code is contributed by offbeat |
Javascript
<script> // JavaScript program to implement // the above approach // Function to find the largest // element in the array arr[] function findLargest(beg,end,arr,n) { // Base Condition if (beg == end) { // Initialize an empty list let compared = new Array(n); for (let i=0;i<n;i++) compared[i]=0; compared[0] = 1; compared[1] = arr[beg]; return compared; } // Divide the array into two equal // length subarrays and recursively // find the largest among the two let compared1 = findLargest(beg, Math.floor((beg + end) / 2), arr, n); let compared2 = findLargest(Math.floor((beg + end) / 2 )+ 1, end, arr, n); if (compared1[1] > compared2[1]) { let k = compared1[0] + 1; // Store length of compared1[] // in the first index compared1[0] = k; // Store the maximum element compared1[k] = compared2[1]; // Return compared1 which // contains the maximum element return compared1; } else { let k = compared2[0] + 1; // Store length of compared2[] // in the first index compared2[0] = k; // Store the maximum element compared2[k] = compared1[1]; // Return compared2[] which // contains the maximum element return compared2; } } // Function to print the second largest // element in the array arr[] function findSecondLargest(end,arr) { // Find the largest element in arr[] let compared1 = findLargest(0, end - 1, arr, end); // Find the second largest element // in arr[] let compared2 = findLargest(2, compared1[0] + 2, compared1, compared1[0]); // Print the second largest element document.write(compared2[1]); } // Driver code let N = 10; let arr=[20, 1990, 12, 1110, 1, 59, 12, 15, 120, 1110]; findSecondLargest(N, arr); // This code is contributed by unknown2108 </script> |
1110
Time Complexity: O(N)
Auxiliary Space: O(logN)
Please Login to comment...