Related Articles
Find roots or zeros of a Polynomial in R Programming – polyroot() Function
• Last Updated : 12 Jun, 2020

`polyroot()` function in R Language is used to calculate roots of a polynomial equation.
A polynomial equation is represented as,

`p(x) = (z1) + (z2 * x) + (z3 * x2) +...+ (z[n] * xn-1)`

Syntax: polyroot(z)

Parameters:
z: Vector of polynomial coefficients in Increasing order

Example 1:

 `# R program to find zeros of a polynomial`` ` `# Creating vectors of coefficients``x1 <``-` `c(``1``, ``2``, ``3``)``x2 <``-` `c(``-``8``, ``4``, ``-``2``)``x3 <``-` `c(``12``, ``-``2``, ``3``)`` ` `# Calling polyroot() function``polyroot(x1)``polyroot(x2)``polyroot(x3)`

Output:

```[1] -0.3333333+0.4714045i -0.3333333-0.4714045i
[1] 1+1.732051i 1-1.732051i
[1] 0.333333+1.972027i 0.333333-1.972027i
```

Example 2:

 `# R program to find zeros of a polynomial`` ` `# Calling polyroot() function`` ` `# For equation 2x - 3 = 0``polyroot(c(``-``3``, ``2``))`` ` `# For equation 3x ^ 2 - 4x + 5 = 0``polyroot(c(``5``, ``-``4``, ``3``))`` ` `# For equation 2x ^ 4 - 3x -12 = 0``polyroot(c(``-``12``, ``-``3``, ``0``, ``2``))`

Output:

```[1] 1.5+0i
[1] 0.666667+1.105542i 0.666667-1.105542i
[1]  2.090489+0.000000i -1.045244+1.333269i -1.045244-1.333269i
```
My Personal Notes arrow_drop_up