# Find root of a number using Newton’s method

Given an integer N and a tolerance level L, the task is to find the square root of that number using Newton’s Method.

Examples:

Input: N = 16, L = 0.0001
Output: 4
42 = 16

Input: N = 327, L = 0.00001
Output: 18.0831

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Newton’s Method:
Let N be any number then the square root of N can be given by the formula:

root = 0.5 * (X + (N / X)) where X is any guess which can be assumed to be N or 1.

• In the above formula, X is any assumed square root of N and root is the correct square root of N.
• Tolerance limit is the maximum difference between X and root allowed.

Approach: The following steps can be followed to compute the answer:

1. Assign X to the N itself.
2. Now, start a loop and keep calculating the root which will surely move towards the correct square root of N.
3. Check for the difference between the assumed X and calculated root, if not yet inside tolerance then update root and continue.
4. If the calculated root comes inside the tolerance allowed then break out of the loop.
5. Print the root.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the square root of ` `// a number using Newtons method ` `double` `squareRoot(``double` `n, ``float` `l) ` `{ ` `    ``// Assuming the sqrt of n as n only ` `    ``double` `x = n; ` ` `  `    ``// The closed guess will be stored in the root ` `    ``double` `root; ` ` `  `    ``// To count the number of iterations ` `    ``int` `count = 0; ` ` `  `    ``while` `(1) { ` `        ``count++; ` ` `  `        ``// Calculate more closed x ` `        ``root = 0.5 * (x + (n / x)); ` ` `  `        ``// Check for closeness ` `        ``if` `(``abs``(root - x) < l) ` `            ``break``; ` ` `  `        ``// Update root ` `        ``x = root; ` `    ``} ` ` `  `    ``return` `root; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``double` `n = 327; ` `    ``float` `l = 0.00001; ` ` `  `    ``cout << squareRoot(n, l); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation of the approach  ` `class` `GFG  ` `{ ` `     `  `    ``// Function to return the square root of  ` `    ``// a number using Newtons method  ` `    ``static` `double` `squareRoot(``double` `n, ``double` `l)  ` `    ``{  ` `        ``// Assuming the sqrt of n as n only  ` `        ``double` `x = n;  ` `     `  `        ``// The closed guess will be stored in the root  ` `        ``double` `root;  ` `     `  `        ``// To count the number of iterations  ` `        ``int` `count = ``0``;  ` `     `  `        ``while` `(``true``) ` `        ``{  ` `            ``count++;  ` `     `  `            ``// Calculate more closed x  ` `            ``root = ``0.5` `* (x + (n / x));  ` `     `  `            ``// Check for closeness  ` `            ``if` `(Math.abs(root - x) < l)  ` `                ``break``;  ` `     `  `            ``// Update root  ` `            ``x = root;  ` `        ``}  ` `     `  `        ``return` `root;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``double` `n = ``327``;  ` `        ``double` `l = ``0.00001``;  ` `     `  `        ``System.out.println(squareRoot(n, l));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 implementation of the approach  ` ` `  `# Function to return the square root of  ` `# a number using Newtons method  ` `def` `squareRoot(n, l) : ` ` `  `    ``# Assuming the sqrt of n as n only  ` `    ``x ``=` `n  ` ` `  `    ``# To count the number of iterations  ` `    ``count ``=` `0`  ` `  `    ``while` `(``1``) : ` `        ``count ``+``=` `1`  ` `  `        ``# Calculate more closed x  ` `        ``root ``=` `0.5` `*` `(x ``+` `(n ``/` `x))  ` ` `  `        ``# Check for closeness  ` `        ``if` `(``abs``(root ``-` `x) < l) : ` `            ``break`  ` `  `        ``# Update root  ` `        ``x ``=` `root ` ` `  `    ``return` `root  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``n ``=` `327` `    ``l ``=` `0.00001`  ` `  `    ``print``(squareRoot(n, l))  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# implementation of the approach  ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `    ``// Function to return the square root of  ` `    ``// a number using Newtons method  ` `    ``static` `double` `squareRoot(``double` `n, ``double` `l)  ` `    ``{  ` `        ``// Assuming the sqrt of n as n only  ` `        ``double` `x = n;  ` `     `  `        ``// The closed guess will be stored in the root  ` `        ``double` `root;  ` `     `  `        ``// To count the number of iterations  ` `        ``int` `count = 0;  ` `     `  `        ``while` `(``true``) ` `        ``{  ` `            ``count++;  ` `     `  `            ``// Calculate more closed x  ` `            ``root = 0.5 * (x + (n / x));  ` `     `  `            ``// Check for closeness  ` `            ``if` `(Math.Abs(root - x) < l)  ` `                ``break``;  ` `     `  `            ``// Update root  ` `            ``x = root;  ` `        ``}  ` `     `  `        ``return` `root;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main()  ` `    ``{  ` `        ``double` `n = 327;  ` `        ``double` `l = 0.00001;  ` `     `  `        ``Console.WriteLine(squareRoot(n, l));  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```18.0831
```

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: DSA Self Paced. Become industry ready at a student-friendly price.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.