Find all rectangles filled with 0
We have one 2D array, filled with zeros and ones. We have to find the starting point and ending point of all rectangles filled with 0. It is given that rectangles are separated and do not touch each other however they can touch the boundary of the array.A rectangle might contain only one element.
Examples:
input = [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1] ] Output: [ [2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5] ] Explanation: We have three rectangles here, starting from (2, 3), (3, 1), (5, 3) Input = [ [1, 0, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 0] ] Output: [ [0, 1, 0, 1], [1, 2, 1, 2], [2, 3, 3, 5], [3, 1, 4, 1], [5, 3, 5, 6], [7, 2, 7, 2], [7, 6, 7, 6] ]
Step 1: Look for the 0 row-wise and column-wise
Step 2: When you encounter any 0, save its position in output array and using loop change all related 0 with this position in any common number so that we can exclude it from processing next time.
Step 3: When you change all related 0 in Step 2, store last processed 0’s location in output array in the same index.
Step 4: Take Special care when you touch the edge, by not subtracting -1 because the loop has broken on the exact location.
Below is the implementation of above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; void findend( int i, int j, vector<vector< int >> &a, vector<vector< int >> &output, int index) { int x = a.size(); int y = a[0].size(); // flag to check column edge case, // initializing with 0 int flagc = 0; // flag to check row edge case, // initializing with 0 int flagr = 0; int n, m; for (m = i; m < x; m++) { // loop breaks where first 1 encounters if (a[m][j] == 1) { flagr = 1; // set the flag break ; } // pass because already processed if (a[m][j] == 5) continue ; for (n = j; n < y; n++) { // loop breaks where first 1 encounters if (a[m][n] == 1) { flagc = 1; // set the flag break ; } // fill rectangle elements with any // number so that we can exclude // next time a[m][n] = 5; } } if (flagr == 1) output[index].push_back(m-1); else // when end point touch the boundary output[index].push_back(m); if (flagc == 1) output[index].push_back(n-1); else // when end point touch the boundary output[index].push_back(n); } void get_rectangle_coordinates(vector<vector< int >> a) { // retrieving the column size of array int size_of_array = a.size(); // output array where we are going // to store our output vector<vector< int >> output; // It will be used for storing start // and end location in the same index int index = -1; for ( int i = 0; i < size_of_array; i++) { for ( int j = 0; j < a[0].size(); j++) { if (a[i][j] == 0) { // storing initial position // of rectangle output.push_back({i, j}); // will be used for the // last position index = index + 1; findend(i, j, a, output, index); } } } cout << "[" ; int aa = 2, bb = 0; for ( auto i:output) { bb = 3; cout << "[" ; for ( int j:i) { if (bb) cout << j << ", " ; else cout << j; bb--; } cout << "]" ; if (aa) cout << ", " ; aa--; } cout << "]" ; } // Driver code int main() { vector<vector< int >> tests = { {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1} }; get_rectangle_coordinates(tests); return 0; } // This code is contributed by mohit kumar 29. |
Java
// Java program for the above approach import java.util.*; class GFG { static void findend( int i, int j, int [][] a, ArrayList<ArrayList<Integer> > output, int index) { int x = a.length; int y = a[ 1 ].length; // flag to check column edge case, // initializing with 0 int flagc = 0 ; // flag to check row edge case, // initializing with 0 int flagr = 0 ; int n = 0 , m = 0 ; for (m = i; m < x; m++) { // loop breaks where first 1 encounters if (a[m][j] == 1 ) { flagr = 1 ; // set the flag break ; } // pass because already processed if (a[m][j] == 5 ) continue ; for (n = j; n < y; n++) { // loop breaks where first 1 encounters if (a[m][n] == 1 ) { flagc = 1 ; // set the flag break ; } // fill rectangle elements with any // number so that we can exclude // next time a[m][n] = 5 ; } } if (flagr == 1 ) { var arr = output.get(index); arr.add(m - 1 ); output.set(index, arr); } else // when end point touch the boundary { var arr = output.get(index); arr.add(m); output.set(index, arr); } if (flagc == 1 ) { var arr = output.get(index); arr.add(n - 1 ); output.set(index, arr); } else // when end point touch the boundary { var arr = output.get(index); arr.add(n); output.set(index, arr); } } static void get_rectangle_coordinates( int [][] a) { // retrieving the column size of array int size_of_array = a.length; // output array where we are going // to store our output ArrayList<ArrayList<Integer> > output = new ArrayList<ArrayList<Integer> >(); // It will be used for storing start // and end location in the same index int index = - 1 ; for ( int i = 0 ; i < size_of_array; i++) { for ( int j = 0 ; j < a[ 0 ].length; j++) { if (a[i][j] == 0 ) { // storing initial position // of rectangle output.add( new ArrayList<Integer>( Arrays.asList(i, j))); // will be used for the // last position index = index + 1 ; findend(i, j, a, output, index); } } } System.out.print( "[" ); int aa = 2 , bb = 0 ; for (var i : output) { bb = 3 ; System.out.print( "[" ); for ( int j : i) { if (bb > 0 ) System.out.print(j + ", " ); else System.out.print(j); bb--; } System.out.print( "]" ); if (aa > 0 ) System.out.print( ", " ); aa--; } System.out.print( "]" ); } // Driver code public static void main(String[] args) { int [][] tests = { { 1 , 1 , 1 , 1 , 1 , 1 , 1 }, { 1 , 1 , 1 , 1 , 1 , 1 , 1 }, { 1 , 1 , 1 , 0 , 0 , 0 , 1 }, { 1 , 0 , 1 , 0 , 0 , 0 , 1 }, { 1 , 0 , 1 , 1 , 1 , 1 , 1 }, { 1 , 0 , 1 , 0 , 0 , 0 , 0 }, { 1 , 1 , 1 , 0 , 0 , 0 , 1 }, { 1 , 1 , 1 , 1 , 1 , 1 , 1 } }; get_rectangle_coordinates(tests); } } // This code is contributed by phasing17 |
Python3
# Python program to find all # rectangles filled with 0 def findend(i,j,a,output,index): x = len (a) y = len (a[ 0 ]) # flag to check column edge case, # initializing with 0 flagc = 0 # flag to check row edge case, # initializing with 0 flagr = 0 for m in range (i,x): # loop breaks where first 1 encounters if a[m][j] = = 1 : flagr = 1 # set the flag break # pass because already processed if a[m][j] = = 5 : pass for n in range (j, y): # loop breaks where first 1 encounters if a[m][n] = = 1 : flagc = 1 # set the flag break # fill rectangle elements with any # number so that we can exclude # next time a[m][n] = 5 if flagr = = 1 : output[index].append( m - 1 ) else : # when end point touch the boundary output[index].append(m) if flagc = = 1 : output[index].append(n - 1 ) else : # when end point touch the boundary output[index].append(n) def get_rectangle_coordinates(a): # retrieving the column size of array size_of_array = len (a) # output array where we are going # to store our output output = [] # It will be used for storing start # and end location in the same index index = - 1 for i in range ( 0 ,size_of_array): for j in range ( 0 , len (a[ 0 ])): if a[i][j] = = 0 : # storing initial position # of rectangle output.append([i, j]) # will be used for the # last position index = index + 1 findend(i, j, a, output, index) print (output) # driver code tests = [ [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ], [ 1 , 1 , 1 , 0 , 0 , 0 , 1 ], [ 1 , 0 , 1 , 0 , 0 , 0 , 1 ], [ 1 , 0 , 1 , 1 , 1 , 1 , 1 ], [ 1 , 0 , 1 , 0 , 0 , 0 , 0 ], [ 1 , 1 , 1 , 0 , 0 , 0 , 1 ], [ 1 , 1 , 1 , 1 , 1 , 1 , 1 ] ] get_rectangle_coordinates(tests) |
C#
// C# program for the above approach using System; using System.Collections.Generic; class GFG { static void findend( int i, int j, int [, ] a, List<List< int >> output, int index) { int x = a.GetLength(0); int y = a.GetLength(1); // flag to check column edge case, // initializing with 0 int flagc = 0; // flag to check row edge case, // initializing with 0 int flagr = 0; int n = 0, m = 0; for (m = i; m < x; m++) { // loop breaks where first 1 encounters if (a[m, j] == 1) { flagr = 1; // set the flag break ; } // pass because already processed if (a[m, j] == 5) continue ; for (n = j; n < y; n++) { // loop breaks where first 1 encounters if (a[m, n] == 1) { flagc = 1; // set the flag break ; } // fill rectangle elements with any // number so that we can exclude // next time a[m, n] = 5; } } if (flagr == 1) output[index].Add(m-1); else // when end point touch the boundary output[index].Add(m); if (flagc == 1) output[index].Add(n-1); else // when end point touch the boundary output[index].Add(n); } static void get_rectangle_coordinates( int [,] a) { // retrieving the column size of array int size_of_array = a.GetLength(0); // output array where we are going // to store our output List<List< int >> output = new List<List< int >>(); // It will be used for storing start // and end location in the same index int index = -1; for ( int i = 0; i < size_of_array; i++) { for ( int j = 0; j < a.GetLength(1); j++) { if (a[i, j] == 0) { // storing initial position // of rectangle output.Add( new List< int >( new int [] {i, j})); // will be used for the // last position index = index + 1; findend(i, j, a, output, index); } } } Console.Write( "[" ); int aa = 2, bb = 0; foreach ( var i in output) { bb = 3; Console.Write( "[" ); foreach ( int j in i) { if (bb > 0) Console.Write(j + ", " ); else Console.Write (j); bb--; } Console.Write ( "]" ); if (aa > 0) Console.Write( ", " ); aa--; } Console.Write( "]" ); } // Driver code public static void Main( string [] args) { int [, ] tests = { {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 1, 1, 1, 1}, {1, 1, 1, 0, 0, 0, 1}, {1, 0, 1, 0, 0, 0, 1}, {1, 0, 1, 1, 1, 1, 1}, {1, 0, 1, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1} }; get_rectangle_coordinates(tests); } } // This code is contributed by phasing17 |
Javascript
<script> // JavaScript program to find all // rectangles filled with 0 function findend(i,j,a,output,index){ let x = a.length let y = a[0].length let m,n; // flag to check column edge case, // initializing with 0 let flagc = 0 // flag to check row edge case, // initializing with 0 let flagr = 0 for (m=i;m<x;m++){ // loop breaks where first 1 encounters if (a[m][j] == 1){ flagr = 1 // set the flag break } // pass because already processed if (a[m][j] == 5) pass for (n=j;n<y;n++){ // loop breaks where first 1 encounters if (a[m][n] == 1){ flagc = 1 // set the flag break } // fill rectangle elements with any // number so that we can exclude // next time a[m][n] = 5 } } if (flagr == 1) output[index].push( m-1) else // when end point touch the boundary output[index].push(m) if (flagc == 1) output[index].push(n-1) else // when end point touch the boundary output[index].push(n) } function get_rectangle_coordinates(a){ // retrieving the column size of array let size_of_array = a.length // output array where we are going // to store our output let output = [] // It will be used for storing start // and end location in the same index let index = -1 for (let i=0;i<size_of_array;i++){ for (let j=0;j<a[0].length;j++){ if (a[i][j] == 0){ // storing initial position // of rectangle output.push([i, j]) // will be used for the // last position index = index + 1 findend(i, j, a, output, index) } } } console.log(output) } // driver code let tests = [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1] ] get_rectangle_coordinates(tests) // This code is contributed by shinjanpatra </script> |
[[2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5]]
Time Complexity: O(x*y).
Auxiliary Space: O(x*y).
This article is contributed by Prabhat jha. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Asked in Intuit
Please Login to comment...