# Find all rectangles filled with 0

We have one 2D array, filled with zeros and ones. We have to find the starting point and ending point of all rectangles filled with 0. It is given that rectangles are separated and do not touch each other however they can touch the boundary of the array.A rectangle might contain only one element.

Examples:

input = [ [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 1, 1, 1], [1, 0, 1, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 1], [1, 1, 1, 1, 1, 1, 1] ] Output: [ [2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5] ] Explanation: We have three rectangles here, starting from (2, 3), (3, 1), (5, 3) Input = [ [1, 0, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 1], [1, 0, 1, 0, 0, 0, 1], [1, 0, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 0, 1, 1, 1, 0] ] Output: [ [0, 1, 0, 1], [1, 2, 1, 2], [2, 3, 3, 5], [3, 1, 4, 1], [5, 3, 5, 6], [7, 2, 7, 2], [7, 6, 7, 6] ]

Step 1: Look for the 0 row-wise and column-wise

Step 2: When you encounter any 0, save its position in output array and using loop change all related 0 with this position in any common number so that we can exclude it from processing next time.

Step 3: When you change all related 0 in Step 2, store last processed 0’s location in output array in the same index.

Step 4: Take Special care when you touch the edge, by not subtracting -1 because the loop has broken on the exact location.

Below is the implementation of above approach:

`# Python program to find all ` `# rectangles filled with 0 ` ` ` `def` `findend(i,j,a,output,index): ` ` ` `x ` `=` `len` `(a) ` ` ` `y ` `=` `len` `(a[` `0` `]) ` ` ` ` ` `# flag to check column edge case, ` ` ` `# initializing with 0 ` ` ` `flagc ` `=` `0` ` ` ` ` `# flag to check row edge case, ` ` ` `# initializing with 0 ` ` ` `flagr ` `=` `0` ` ` ` ` `for` `m ` `in` `range` `(i,x): ` ` ` ` ` `# loop breaks where first 1 encounters ` ` ` `if` `a[m][j] ` `=` `=` `1` `: ` ` ` `flagr ` `=` `1` `# set the flag ` ` ` `break` ` ` ` ` `# pass because already processed ` ` ` `if` `a[m][j] ` `=` `=` `5` `: ` ` ` `pass` ` ` ` ` `for` `n ` `in` `range` `(j, y): ` ` ` ` ` `# loop breaks where first 1 encounters ` ` ` `if` `a[m][n] ` `=` `=` `1` `: ` ` ` `flagc ` `=` `1` `# set the flag ` ` ` `break` ` ` ` ` `# fill rectangle elements with any ` ` ` `# number so that we can exclude ` ` ` `# next time ` ` ` `a[m][n] ` `=` `5` ` ` ` ` `if` `flagr ` `=` `=` `1` `: ` ` ` `output[index].append( m` `-` `1` `) ` ` ` `else` `: ` ` ` `# when end point touch the boundary ` ` ` `output[index].append(m) ` ` ` ` ` `if` `flagc ` `=` `=` `1` `: ` ` ` `output[index].append(n` `-` `1` `) ` ` ` `else` `: ` ` ` `# when end point touch the boundary ` ` ` `output[index].append(n) ` ` ` ` ` `def` `get_rectangle_coordinates(a): ` ` ` ` ` `# retrieving the column size of array ` ` ` `size_of_array ` `=` `len` `(a) ` ` ` ` ` `# output array where we are going ` ` ` `# to store our output ` ` ` `output ` `=` `[] ` ` ` ` ` `# It will be used for storing start ` ` ` `# and end location in the same index ` ` ` `index ` `=` `-` `1` ` ` ` ` `for` `i ` `in` `range` `(` `0` `,size_of_array): ` ` ` `for` `j ` `in` `range` `(` `0` `, ` `len` `(a[` `0` `])): ` ` ` `if` `a[i][j] ` `=` `=` `0` `: ` ` ` ` ` `# storing initial position ` ` ` `# of rectangle ` ` ` `output.append([i, j]) ` ` ` ` ` `# will be used for the ` ` ` `# last position ` ` ` `index ` `=` `index ` `+` `1` ` ` `findend(i, j, a, output, index) ` ` ` ` ` ` ` `print` `(output) ` ` ` `# driver code ` `tests ` `=` `[ ` ` ` ` ` `[` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `1` `, ` `1` `, ` `1` `, ` `0` `, ` `0` `, ` `0` `, ` `1` `], ` ` ` `[` `1` `, ` `0` `, ` `1` `, ` `0` `, ` `0` `, ` `0` `, ` `1` `], ` ` ` `[` `1` `, ` `0` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `], ` ` ` `[` `1` `, ` `0` `, ` `1` `, ` `0` `, ` `0` `, ` `0` `, ` `0` `], ` ` ` `[` `1` `, ` `1` `, ` `1` `, ` `0` `, ` `0` `, ` `0` `, ` `1` `], ` ` ` `[` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `, ` `1` `] ` ` ` ` ` `] ` ` ` ` ` `get_rectangle_coordinates(tests) ` |

*chevron_right*

*filter_none*

Output:

[[2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5]]

This article is contributed by **Prabhat jha**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Asked in Intuit

Don’t stop now and take your learning to the next level. Learn all the important concepts of Data Structures and Algorithms with the help of the most trusted course: **DSA Self Paced**. Become industry ready at a student-friendly price.

## Recommended Posts:

- Find if two rectangles overlap
- Find the number of rectangles of size 2*1 which can be placed inside a rectangle of size n*m
- Number of ways of cutting a Matrix such that atleast one cell is filled in each part
- Number of rectangles in N*M grid
- Sum of Areas of Rectangles possible for an array
- Create a matrix with alternating rectangles of O and X
- Smallest square formed with given rectangles
- Number of rectangles in a circle of radius R
- Maximum given sized rectangles that can be cut out of a sheet of paper
- Total number of unit cells covered by all given Rectangles
- Number of unique rectangles formed using N unit squares
- Intersecting rectangle when bottom-left and top-right corners of two rectangles are given
- Count of rectangles possible from N and M straight lines parallel to X and Y axis respectively
- Minimum area of square holding two identical rectangles
- Count the number of rectangles such that ratio of sides lies in the range [a,b]
- Largest subset of rectangles such that no rectangle fit in any other rectangle
- Find sub-matrix with the given sum
- Find N in the given matrix that follows a pattern
- Find the mean vector of a Matrix
- Find the position of the given row in a 2-D array

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.