Open In App
Related Articles

Find all rectangles filled with 0

Improve Article
Improve
Save Article
Save
Like Article
Like

We have one 2D array, filled with zeros and ones. We have to find the starting point and ending point of all rectangles filled with 0. It is given that rectangles are separated and do not touch each other however they can touch the boundary of the array.A rectangle might contain only one element.

Examples: 

input = [
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 0, 1, 0, 0, 0, 1],
            [1, 0, 1, 1, 1, 1, 1],
            [1, 0, 1, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 1, 1, 1, 1, 1, 1]
        ]


Output:
[
  [2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5]
]

Explanation:
We have three rectangles here, starting from 
(2, 3), (3, 1), (5, 3)

Input = [
            [1, 0, 1, 1, 1, 1, 1],
            [1, 1, 0, 1, 1, 1, 1],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 0, 1, 0, 0, 0, 1],
            [1, 0, 1, 1, 1, 1, 1],
            [1, 1, 1, 0, 0, 0, 0],
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 0, 1, 1, 1, 0]
        ]


Output:
[
  [0, 1, 0, 1], [1, 2, 1, 2], [2, 3, 3, 5], 
  [3, 1, 4, 1], [5, 3, 5, 6], [7, 2, 7, 2], 
  [7, 6, 7, 6]
]

Step 1: Look for the 0 row-wise and column-wise
Step 2: When you encounter any 0, save its position in output array and using loop change all related 0 with this position in any common number so that we can exclude it from processing next time.
Step 3: When you change all related 0 in Step 2, store last processed 0’s location in output array in the same index.
Step 4: Take Special care when you touch the edge, by not subtracting -1 because the loop has broken on the exact location. 

Below is the implementation of above approach: 

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
void findend(int i,int j, vector<vector<int>> &a,
             vector<vector<int>> &output,int index)
{
  int x = a.size();
  int y = a[0].size();
 
  // flag to check column edge case,
  // initializing with 0
  int flagc = 0;
 
  // flag to check row edge case,
  // initializing with 0
  int flagr = 0;
  int n, m;
 
  for (m = i; m < x; m++)
  {
 
    // loop breaks where first 1 encounters
    if (a[m][j] == 1)
    {
      flagr = 1; // set the flag
      break;
    }
 
    // pass because already processed
    if (a[m][j] == 5) continue;
 
    for (n = j; n < y; n++)
    {
      // loop breaks where first 1 encounters
      if (a[m][n] == 1)
      {
        flagc = 1; // set the flag
        break;
      }
 
      // fill rectangle elements with any
      // number so that we can exclude
      // next time
      a[m][n] = 5;
    }
  }
 
  if (flagr == 1)
    output[index].push_back(m-1);
  else
    // when end point touch the boundary
    output[index].push_back(m);
 
  if (flagc == 1)
    output[index].push_back(n-1);
  else
    // when end point touch the boundary
    output[index].push_back(n);
}
 
void get_rectangle_coordinates(vector<vector<int>> a)
{
 
  // retrieving the column size of array
  int size_of_array = a.size();
 
  // output array where we are going
  // to store our output
  vector<vector<int>> output;
 
  // It will be used for storing start
  // and end location in the same index
  int index = -1;
 
  for (int i = 0; i < size_of_array; i++)
  {
    for (int j = 0; j < a[0].size(); j++)
    {
      if (a[i][j] == 0)
      {
 
        // storing initial position
        // of rectangle
        output.push_back({i, j});
 
        // will be used for the
        // last position
        index = index + 1;
        findend(i, j, a, output, index);
      }
    }
  }
 
  cout << "[";
  int aa = 2, bb = 0;
 
  for(auto i:output)
  {
    bb = 3;
    cout << "[";
    for(int j:i)
    {
      if(bb)
        cout << j << ", ";
      else
        cout << j;
      bb--;
    }
    cout << "]";
    if(aa)
      cout << ", ";
    aa--;
 
  }
  cout << "]";
}
 
// Driver code
int main()
{
  vector<vector<int>> tests = {
    {1, 1, 1, 1, 1, 1, 1},
    {1, 1, 1, 1, 1, 1, 1},
    {1, 1, 1, 0, 0, 0, 1},
    {1, 0, 1, 0, 0, 0, 1},
    {1, 0, 1, 1, 1, 1, 1},
    {1, 0, 1, 0, 0, 0, 0},
    {1, 1, 1, 0, 0, 0, 1},
    {1, 1, 1, 1, 1, 1, 1}
  };
 
  get_rectangle_coordinates(tests);
 
  return 0;
}
 
// This code is contributed by mohit kumar 29.


Java




// Java program for the above approach
import java.util.*;
 
class GFG {
  static void
    findend(int i, int j, int[][] a,
            ArrayList<ArrayList<Integer> > output,
            int index)
  {
    int x = a.length;
    int y = a[1].length;
 
    // flag to check column edge case,
    // initializing with 0
    int flagc = 0;
 
    // flag to check row edge case,
    // initializing with 0
    int flagr = 0;
    int n = 0, m = 0;
 
    for (m = i; m < x; m++) {
 
      // loop breaks where first 1 encounters
      if (a[m][j] == 1) {
        flagr = 1; // set the flag
        break;
      }
 
      // pass because already processed
      if (a[m][j] == 5)
        continue;
 
      for (n = j; n < y; n++) {
        // loop breaks where first 1 encounters
        if (a[m][n] == 1) {
          flagc = 1; // set the flag
          break;
        }
 
        // fill rectangle elements with any
        // number so that we can exclude
        // next time
        a[m][n] = 5;
      }
    }
 
    if (flagr == 1) {
      var arr = output.get(index);
      arr.add(m - 1);
      output.set(index, arr);
    }
    else
      // when end point touch the boundary
    {
      var arr = output.get(index);
      arr.add(m);
      output.set(index, arr);
    }
 
    if (flagc == 1) {
      var arr = output.get(index);
      arr.add(n - 1);
      output.set(index, arr);
    }
    else
      // when end point touch the boundary
    {
      var arr = output.get(index);
      arr.add(n);
      output.set(index, arr);
    }
  }
 
  static void get_rectangle_coordinates(int[][] a)
  {
 
    // retrieving the column size of array
    int size_of_array = a.length;
 
    // output array where we are going
    // to store our output
    ArrayList<ArrayList<Integer> > output
      = new ArrayList<ArrayList<Integer> >();
 
    // It will be used for storing start
    // and end location in the same index
    int index = -1;
 
    for (int i = 0; i < size_of_array; i++) {
      for (int j = 0; j < a[0].length; j++) {
        if (a[i][j] == 0) {
 
          // storing initial position
          // of rectangle
          output.add(new ArrayList<Integer>(
            Arrays.asList(i, j)));
 
          // will be used for the
          // last position
          index = index + 1;
          findend(i, j, a, output, index);
        }
      }
    }
 
    System.out.print("[");
    int aa = 2, bb = 0;
 
    for (var i : output) {
      bb = 3;
      System.out.print("[");
      for (int j : i) {
        if (bb > 0)
          System.out.print(j + ", ");
        else
          System.out.print(j);
        bb--;
      }
      System.out.print("]");
      if (aa > 0)
        System.out.print(", ");
      aa--;
    }
    System.out.print("]");
  }
 
  // Driver code
  public static void main(String[] args)
  {
    int[][] tests = { { 1, 1, 1, 1, 1, 1, 1 },
                     { 1, 1, 1, 1, 1, 1, 1 },
                     { 1, 1, 1, 0, 0, 0, 1 },
                     { 1, 0, 1, 0, 0, 0, 1 },
                     { 1, 0, 1, 1, 1, 1, 1 },
                     { 1, 0, 1, 0, 0, 0, 0 },
                     { 1, 1, 1, 0, 0, 0, 1 },
                     { 1, 1, 1, 1, 1, 1, 1 } };
 
    get_rectangle_coordinates(tests);
  }
}
 
// This code is contributed by phasing17


Python3




# Python program to find all
# rectangles filled with 0
 
def findend(i,j,a,output,index):
    x = len(a)
    y = len(a[0])
 
    # flag to check column edge case,
    # initializing with 0
    flagc = 0
 
    # flag to check row edge case,
    # initializing with 0
    flagr = 0
 
    for m in range(i,x):
 
        # loop breaks where first 1 encounters
        if a[m][j] == 1:
            flagr = 1 # set the flag
            break
 
        # pass because already processed
        if a[m][j] == 5:
            pass
 
        for n in range(j, y):
 
            # loop breaks where first 1 encounters
            if a[m][n] == 1:
                flagc = 1 # set the flag
                break
 
            # fill rectangle elements with any
            # number so that we can exclude
            # next time
            a[m][n] = 5
 
    if flagr == 1:
        output[index].append( m-1)
    else:
        # when end point touch the boundary
        output[index].append(m)
 
    if flagc == 1:
        output[index].append(n-1)
    else:
        # when end point touch the boundary
        output[index].append(n)
 
 
def get_rectangle_coordinates(a):
 
    # retrieving the column size of array
    size_of_array = len(a)
 
    # output array where we are going
    # to store our output
    output = []
 
    # It will be used for storing start
    # and end location in the same index
    index = -1
 
    for i in range(0,size_of_array):
        for j in range(0, len(a[0])):
            if a[i][j] == 0:
 
                # storing initial position
                # of rectangle
                output.append([i, j])
 
                # will be used for the
                # last position
                index = index + 1       
                findend(i, j, a, output, index)
 
 
    print (output)
 
# driver code
tests = [
 
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 0, 1, 0, 0, 0, 1],
            [1, 0, 1, 1, 1, 1, 1],
            [1, 0, 1, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 1, 1, 1, 1, 1, 1]
 
        ]
 
 
get_rectangle_coordinates(tests)


C#




// C#  program for the above approach
using System;
using System.Collections.Generic;
 
class GFG
{
  static void findend(int i,int j,int[, ] a,
                      List<List<int>> output,int index)
  {
    int x = a.GetLength(0);
    int y = a.GetLength(1);
 
    // flag to check column edge case,
    // initializing with 0
    int flagc = 0;
 
    // flag to check row edge case,
    // initializing with 0
    int flagr = 0;
    int n = 0, m = 0;
 
    for (m = i; m < x; m++)
    {
 
      // loop breaks where first 1 encounters
      if (a[m, j] == 1)
      {
        flagr = 1; // set the flag
        break;
      }
 
      // pass because already processed
      if (a[m, j] == 5) continue;
 
      for (n = j; n < y; n++)
      {
        // loop breaks where first 1 encounters
        if (a[m, n] == 1)
        {
          flagc = 1; // set the flag
          break;
        }
 
        // fill rectangle elements with any
        // number so that we can exclude
        // next time
        a[m, n] = 5;
      }
    }
 
    if (flagr == 1)
      output[index].Add(m-1);
    else
      // when end point touch the boundary
      output[index].Add(m);
 
    if (flagc == 1)
      output[index].Add(n-1);
    else
      // when end point touch the boundary
      output[index].Add(n);
  }
 
  static void get_rectangle_coordinates(int[,] a)
  {
 
    // retrieving the column size of array
    int size_of_array = a.GetLength(0);
 
    // output array where we are going
    // to store our output
    List<List<int>> output = new List<List<int>>();
 
    // It will be used for storing start
    // and end location in the same index
    int index = -1;
 
    for (int i = 0; i < size_of_array; i++)
    {
      for (int j = 0; j < a.GetLength(1); j++)
      {
        if (a[i, j] == 0)
        {
 
          // storing initial position
          // of rectangle
          output.Add(new List<int>(new int[] {i, j}));
 
          // will be used for the
          // last position
          index = index + 1;
          findend(i, j, a, output, index);
        }
      }
    }
 
    Console.Write("[");
    int aa = 2, bb = 0;
 
    foreach (var i in output)
    {
      bb = 3;
      Console.Write("[");
      foreach(int j in i)
      {
        if(bb > 0)
          Console.Write(j + ", ");
        else
          Console.Write (j);
        bb--;
      }
      Console.Write ("]");
      if(aa > 0)
        Console.Write(", ");
      aa--;
 
    }
    Console.Write("]");
  }
 
  // Driver code
  public static void Main(string[] args)
  {
    int[, ] tests = {
      {1, 1, 1, 1, 1, 1, 1},
      {1, 1, 1, 1, 1, 1, 1},
      {1, 1, 1, 0, 0, 0, 1},
      {1, 0, 1, 0, 0, 0, 1},
      {1, 0, 1, 1, 1, 1, 1},
      {1, 0, 1, 0, 0, 0, 0},
      {1, 1, 1, 0, 0, 0, 1},
      {1, 1, 1, 1, 1, 1, 1}
    };
 
    get_rectangle_coordinates(tests);
 
  }
}
 
// This code is contributed by phasing17


Javascript




<script>
 
// JavaScript program to find all
// rectangles filled with 0
 
function findend(i,j,a,output,index){
    let x = a.length
    let y = a[0].length
    let m,n;
 
    // flag to check column edge case,
    // initializing with 0
    let flagc = 0
 
    // flag to check row edge case,
    // initializing with 0
    let flagr = 0
 
    for(m=i;m<x;m++){
 
        // loop breaks where first 1 encounters
        if(a[m][j] == 1){
            flagr = 1 // set the flag
            break
        }
 
        // pass because already processed
        if(a[m][j] == 5)
            pass
 
        for(n=j;n<y;n++){
 
            // loop breaks where first 1 encounters
            if(a[m][n] == 1){
                flagc = 1 // set the flag
                break
            }
 
            // fill rectangle elements with any
            // number so that we can exclude
            // next time
            a[m][n] = 5
        }
    }
 
    if(flagr == 1)
        output[index].push( m-1)
    else
        // when end point touch the boundary
        output[index].push(m)
 
    if(flagc == 1)
        output[index].push(n-1)
    else
        // when end point touch the boundary
        output[index].push(n)
}
 
function get_rectangle_coordinates(a){
 
    // retrieving the column size of array
    let size_of_array = a.length
 
    // output array where we are going
    // to store our output
    let output = []
 
    // It will be used for storing start
    // and end location in the same index
    let index = -1
 
    for(let i=0;i<size_of_array;i++){
        for(let j=0;j<a[0].length;j++){
            if(a[i][j] == 0){
 
                // storing initial position
                // of rectangle
                output.push([i, j])
 
                // will be used for the
                // last position
                index = index + 1   
                findend(i, j, a, output, index)
            }
        }
    }
 
    console.log(output)
}
 
// driver code
let tests = [
 
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 1, 1, 1, 1],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 0, 1, 0, 0, 0, 1],
            [1, 0, 1, 1, 1, 1, 1],
            [1, 0, 1, 0, 0, 0, 0],
            [1, 1, 1, 0, 0, 0, 1],
            [1, 1, 1, 1, 1, 1, 1]
 
        ]
 
 
get_rectangle_coordinates(tests)
 
// This code is contributed by shinjanpatra
 
</script>


Output

[[2, 3, 3, 5], [3, 1, 5, 1], [5, 3, 6, 5]]

Time Complexity: O(x*y). 
Auxiliary Space: O(x*y).

If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Asked in Intuit


Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Last Updated : 05 Dec, 2022
Like Article
Save Article
Similar Reads
Related Tutorials