Skip to content
Related Articles

Related Articles

Improve Article

Find Quotient and Remainder of two integer without using division operators

  • Difficulty Level : Expert
  • Last Updated : 07 Apr, 2021
Geek Week

Given two positive integers dividend and divisor, our task is to find quotient and remainder. The use of division or mod operator is not allowed.

Examples:

Input : dividend = 10, divisor = 3 
Output : 3, 1 
Explanation: 
The quotient when 10 is divided by 3 is 3 and the remainder is 1.

Input : dividend = 11, divisor = 5 
Output : 2, 1 
Explanation: 
The quotient when 11 is divided by 5 is 2 and the remainder is 1. 
 

Approach: 
To solve the problem mentioned above we will use the Binary Search technique. We can implement the search method in range 1 to N where N is the dividend. Here we will use multiplication to decide the range. As soon as we break out of the while loop of binary search we get our quotient and the remainder can be found using the multiplication and subtraction operator. Handle the special case, when the dividend is less than or equal to the divisor, without the use of binary search.



Below is the implementation of the above approach:  

C++




// C++ implementation to Find Quotient
// and Remainder of two integer without
// using / and % operator using Binary search
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to the quotient and remainder
pair<int, int> find(int dividend, int divisor,
                    int start, int end)
{
 
    // Check if start is greater than the end
    if (start > end)
        return { 0, dividend };
 
    // Calculate mid
    int mid = start + (end - start) / 2;
 
    int n = dividend - divisor * mid;
 
    // Check if n is greater than divisor
    // then increment the mid by 1
    if (n > divisor)
        start = mid + 1;
 
    // Check if n is less than 0
    // then decrement the mid by 1
    else if (n < 0)
        end = mid - 1;
 
    else {
        // Check if n equals to divisor
        if (n == divisor) {
            ++mid;
            n = 0;
        }
 
        // Return the final answer
        return { mid, n };
    }
 
    // Recursive calls
    return find(dividend, divisor, start, end);
}
 
pair<int, int> divide(int dividend, int divisor)
{
    return find(dividend, divisor, 1, dividend);
}
 
// Driver code
int main(int argc, char* argv[])
{
    int dividend = 10, divisor = 3;
 
    pair<int, int> ans;
 
    ans = divide(dividend, divisor);
 
    cout << ans.first << ", ";
    cout << ans.second << endl;
 
    return 0;
}

Java




// JAVA implementation to Find Quotient
// and Remainder of two integer without
// using / and % operator using Binary search
 
class GFG{
  
// Function to the quotient and remainder
static int[] find(int dividend, int divisor,
                    int start, int end)
{
  
    // Check if start is greater than the end
    if (start > end)
        return new int[] { 0, dividend };
  
    // Calculate mid
    int mid = start + (end - start) / 2;
  
    int n = dividend - divisor * mid;
  
    // Check if n is greater than divisor
    // then increment the mid by 1
    if (n > divisor)
        start = mid + 1;
  
    // Check if n is less than 0
    // then decrement the mid by 1
    else if (n < 0)
        end = mid - 1;
  
    else {
        // Check if n equals to divisor
        if (n == divisor) {
            ++mid;
            n = 0;
        }
  
        // Return the final answer
        return new int[] { mid, n };
    }
  
    // Recursive calls
    return find(dividend, divisor, start, end);
}
  
static int[]  divide(int dividend, int divisor)
{
    return find(dividend, divisor, 1, dividend);
}
  
// Driver code
public static void main(String[] args)
{
    int dividend = 10, divisor = 3;
   
    int []ans = divide(dividend, divisor);
  
    System.out.print(ans[0]+ ", ");
    System.out.print(ans[1] +"\n");
  
}
}
 
// This code contributed by sapnasingh4991

Python3




# Python3 implementation to Find Quotient
# and Remainder of two integer without
# using / and % operator using Binary search
 
# Function to the quotient and remainder
def find(dividend, divisor,  start,  end) :
 
    # Check if start is greater than the end
    if (start > end) :
        return ( 0, dividend );
 
    # Calculate mid
    mid = start + (end - start) // 2;
 
    n = dividend - divisor * mid;
 
    # Check if n is greater than divisor
    # then increment the mid by 1
    if (n > divisor) :
        start = mid + 1;
 
    # Check if n is less than 0
    # then decrement the mid by 1
    elif (n < 0) :
        end = mid - 1;
 
    else :
        # Check if n equals to divisor
        if (n == divisor) :
            mid += 1;
            n = 0;
 
        # Return the final answer
        return ( mid, n );
     
    # Recursive calls
    return find(dividend, divisor, start, end);
 
def divide(dividend, divisor) :
 
    return find(dividend, divisor, 1, dividend);
 
# Driver code
if __name__ == "__main__" :
 
    dividend = 10; divisor = 3;
 
    ans = divide(dividend, divisor);
 
    print(ans[0],", ",ans[1])
 
# This code is contributed by Yash_R

C#




// C# implementation to Find Quotient
// and Remainder of two integer without
// using / and % operator using Binary search
  
using System;
 
public class GFG{
   
// Function to the quotient and remainder
static int[] find(int dividend, int divisor,
                    int start, int end)
{
   
    // Check if start is greater than the end
    if (start > end)
        return new int[] { 0, dividend };
   
    // Calculate mid
    int mid = start + (end - start) / 2;
   
    int n = dividend - divisor * mid;
   
    // Check if n is greater than divisor
    // then increment the mid by 1
    if (n > divisor)
        start = mid + 1;
   
    // Check if n is less than 0
    // then decrement the mid by 1
    else if (n < 0)
        end = mid - 1;
   
    else {
        // Check if n equals to divisor
        if (n == divisor) {
            ++mid;
            n = 0;
        }
   
        // Return the readonly answer
        return new int[] { mid, n };
    }
   
    // Recursive calls
    return find(dividend, divisor, start, end);
}
   
static int[]  divide(int dividend, int divisor)
{
    return find(dividend, divisor, 1, dividend);
}
   
// Driver code
public static void Main(String[] args)
{
    int dividend = 10, divisor = 3;
    
    int []ans = divide(dividend, divisor);
   
    Console.Write(ans[0]+ ", ");
    Console.Write(ans[1] +"\n");
   
}
}
// This code contributed by Princi Singh

Javascript




<script>
 
// Javascript implementation to Find Quotient
// and Remainder of two integer without
// using / and % operator using Binary search
 
// Function to the quotient and remainder
function find(dividend, divisor, start, end)
{
     
    // Check if start is greater than the end
    if (start > end)
        return [0, dividend];
 
    // Calculate mid
    var mid = start + parseInt((end - start) / 2);
 
    var n = dividend - divisor * mid;
 
    // Check if n is greater than divisor
    // then increment the mid by 1
    if (n > divisor)
        start = mid + 1;
 
    // Check if n is less than 0
    // then decrement the mid by 1
    else if (n < 0)
        end = mid - 1;
 
    else
    {
         
        // Check if n equals to divisor
        if (n == divisor)
        {
            ++mid;
            n = 0;
        }
 
        // Return the final answer
        return [ mid, n];
    }
 
    // Recursive calls
    return find(dividend, divisor, start, end);
}
 
function divide(dividend, divisor)
{
    return find(dividend, divisor, 1, dividend);
}
 
// Driver code
var dividend = 10, divisor = 3;
var ans = divide(dividend, divisor);
 
document.write(ans[0] + ", ");
document.write(ans[1] + "\n");
 
// This code is contributed by gauravrajput1
 
</script>
Output: 
3, 1

 

Time Complexity: O(logN)
Space Complexity: O(n)
Similar article: Divide two integers without using multiplication, division and mod operator
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :