Find prime number K in an array such that (A[i] % K) is maximum
Given an array arr[] of n integers. The task is to find an element from the array K such that
- K is prime.
- And, arr[i] % K is maximum for all valid i among all possible values of K
if there is no prime number in the array then print -1.
Examples:
Input: arr[] = {2, 10, 15, 7, 6, 8, 13}
Output: 13
2, 7 and 13 are the only prime numbers in the array.
The maximum possible value of arr[i] % 2 is 1 i.e. 15 % 2 = 1.
For 7, it is 6 % 7 = 6
For 13, 10 % 13 = 10 (Maximum possible)Input: arr[] = {23, 13, 6, 2, 15, 18, 8}
Output: 23
Approach: In order to maximize the value of arr[i] % K, K must be the maximum prime number from the array and arr[i] must be the greatest element from the array which is less than K. So, the problem now gets reduced to finding the maximum prime number from the array. In order to do that,
- First find all the prime numbers less than or equal to the maximum element from the array using Sieve.
- Then, find the maximum prime number from the array and print it. If there is no prime present in the array then print -1.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; // Function to return the required // prime number from the array int getPrime( int arr[], int n) { // Find maximum value in the array int max_val = *max_element(arr, arr + n); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. vector< bool > prime(max_val + 1, true ); // Remaining part of SIEVE prime[0] = false ; prime[1] = false ; for ( int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= max_val; i += p) prime[i] = false ; } } // To store the maximum prime number int maximum = -1; for ( int i = 0; i < n; i++) { // If current element is prime // then update the maximum prime if (prime[arr[i]]) maximum = max(maximum, arr[i]); } // Return the maximum prime // number from the array return maximum; } // Driver code int main() { int arr[] = { 2, 10, 15, 7, 6, 8, 13 }; int n = sizeof (arr) / sizeof (arr[0]); cout << getPrime(arr, n); return 0; } |
Java
// Java implementation of the approach import java.util.*; class GFG { // Function to return the required // prime number from the array static int getPrime( int arr[], int n) { // Find maximum value in the array int max_val = Arrays.stream(arr).max().getAsInt(); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. Vector<Boolean> prime = new Vector<>(max_val + 1 ); for ( int i = 0 ; i < max_val + 1 ; i++) prime.add(i,Boolean.TRUE); // Remaining part of SIEVE prime.add( 1 ,Boolean.FALSE); prime.add( 2 ,Boolean.FALSE); for ( int p = 2 ; p * p <= max_val; p++) { // If prime[p] is not changed, then // it is a prime if (prime.get(p) == true ) { // Update all multiples of p for ( int i = p * 2 ; i <= max_val; i += p) prime.add(i,Boolean.FALSE); } } // To store the maximum prime number int maximum = - 1 ; for ( int i = 0 ; i < n; i++) { // If current element is prime // then update the maximum prime if (prime.get(arr[i])) { maximum = Math.max(maximum, arr[i]); } } // Return the maximum prime // number from the array return maximum; } // Driver code public static void main(String[] args) { int arr[] = { 2 , 10 , 15 , 7 , 6 , 8 , 13 }; int n = arr.length; System.out.println(getPrime(arr, n)); } } // This code has been contributed by 29AjayKumar |
Python3
# Python 3 implementation of the approach from math import sqrt # Function to return the required # prime number from the array def getPrime(arr, n): # Find maximum value in the array max_val = arr[ 0 ] for i in range ( len (arr)): # USE SIEVE TO FIND ALL PRIME NUMBERS LESS # THAN OR EQUAL TO max_val # Create a boolean array "prime[0..n]". A # value in prime[i] will finally be false # if i is Not a prime, else true. if (arr[i] > max_val): max_val = arr[i] prime = [ True for i in range (max_val + 1 )] # Remaining part of SIEVE prime[ 0 ] = False prime[ 1 ] = False for p in range ( 2 , int (sqrt(max_val)) + 1 , 1 ): # If prime[p] is not changed, then # it is a prime if (prime[p] = = True ): # Update all multiples of p for i in range (p * 2 , max_val + 1 , p): prime[i] = False # To store the maximum prime number maximum = - 1 for i in range (n): # If current element is prime # then update the maximum prime if (prime[arr[i]]): maximum = max (maximum, arr[i]) # Return the maximum prime # number from the array return maximum # Driver code if __name__ = = '__main__' : arr = [ 2 , 10 , 15 , 7 , 6 , 8 , 13 ] n = len (arr) print (getPrime(arr, n)) # This code is contributed by # Surendra_Gangwar |
C#
// C# implementation of the approach using System; using System.Linq; using System.Collections.Generic; class GFG { // Function to return the required // prime number from the array static int getPrime( int []arr, int n) { // Find maximum value in the array int max_val = arr.Max(); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. List<Boolean> prime = new List<Boolean>(max_val + 1); for ( int i = 0; i < max_val + 1; i++) prime.Insert(i, true ); // Remaining part of SIEVE prime.Insert(1, false ); prime.Insert(2, false ); for ( int p = 2; p * p <= max_val; p++) { // If prime[p] is not changed, // then it is a prime if (prime[p] == true ) { // Update all multiples of p for ( int i = p * 2; i <= max_val; i += p) prime.Insert(i, false ); } } // To store the maximum prime number int maximum = -1; for ( int i = 0; i < n; i++) { // If current element is prime // then update the maximum prime if (prime[arr[i]]) { maximum = Math.Max(maximum, arr[i]); } } // Return the maximum prime // number from the array return maximum; } // Driver code public static void Main(String[] args) { int []arr = { 2, 10, 15, 7, 6, 8, 13 }; int n = arr.Length; Console.WriteLine(getPrime(arr, n)); } } // This code contributed by Rajput-Ji |
PHP
<?php // PHP implementation of the approach // Function to return the count of primes // in the given array function getPrime( $arr , $n ) { // Find maximum value in the array $max_val = max( $arr ); // USE SIEVE TO FIND ALL PRIME NUMBERS LESS // THAN OR EQUAL TO max_val // Create a boolean array "prime[0..n]". A // value in prime[i] will finally be false // if i is Not a prime, else true. $prime = array_fill (0, $max_val + 1, true); // Remaining part of SIEVE $prime [0] = false; $prime [1] = false; for ( $p = 2; $p * $p <= $max_val ; $p ++) { // If prime[p] is not changed, then // it is a prime if ( $prime [ $p ] == true) { // Update all multiples of p for ( $i = $p * 2; $i <= $max_val ; $i += $p ) $prime [ $i ] = false; } } // To store the maximum prime number $maximum = -1; for ( $i = 0; $i < $n ; $i ++) { // If current element is prime // then update the maximum prime if ( $prime [ $arr [ $i ]]) $maximum = max( $maximum , $arr [ $i ]); } // Return the maximum prime // number from the array return $maximum ; } // Driver code $arr = array ( 2, 10, 15, 7, 6, 8, 13 ); $n = count ( $arr ) ; echo getPrime( $arr , $n ); // This code is contributed by AnkitRai01 ?> |
13
Recommended Posts:
- Find sum of a number and its maximum prime factor
- Find a number that divides maximum array elements
- Find coordinates of a prime number in a Prime Spiral
- Find integers that divides maximum number of elements of the array
- Number which has the maximum number of distinct prime factors in the range M to N
- Minimum and Maximum prime numbers in an array
- Maximum no. of contiguous Prime Numbers in an array
- Represent a number as a sum of maximum possible number of Prime Numbers
- Number with maximum number of prime factors
- Maximum number of unique prime factors
- Insert minimum number in array so that sum of array becomes prime
- Find the sum of prime numbers in the Kth array
- Find the sum of non-prime elements in the given array
- Sum of every K'th prime number in an array
- Sum of every K’th prime number in an array
If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.