# Find all permuted rows of a given row in a matrix

• Difficulty Level : Easy
• Last Updated : 06 Jul, 2022

We are given an m*n matrix of positive integers and a row number. The task is to find all rows in given matrix which are permutations of given row elements. It is also given that values in every row are distinct.

Examples:

```Input : mat[][] = {{3, 1, 4, 2},
{1, 6, 9, 3},
{1, 2, 3, 4},
{4, 3, 2, 1}}
row = 3
Output: 0, 2
Rows at indexes 0 and 2 are permutations of
row at index 3. ```

A simple solution is to one by one sort all rows and check all rows. If any row is completely equal to the given row, that means the current row is a permutation of the given row. The time complexity for this approach will be O(m*n log n).

An efficient approach is to use hashing. Simply create a hash set for the given row. After hash set creation, traverse through the remaining rows, and for every row check if all of its elements are present in the hash set or not.

Implementation:

## CPP

 `// C++ program to find all permutations of a given row``#include``#define MAX 100` `using` `namespace` `std;` `// Function to find all permuted rows of a given row r``void` `permutatedRows(``int` `mat[][MAX], ``int` `m, ``int` `n, ``int` `r)``{``    ``// Creating an empty set``    ``unordered_set<``int``> s;` `    ``// Count frequencies of elements in given row r``    ``for` `(``int` `j=0; j

## Java

 `// Java program to find all permutations of a given row``import` `java.util.*;` `class` `GFG``{``    ` `static` `int` `MAX = ``100``;` `// Function to find all permuted rows of a given row r``static` `void` `permutatedRows(``int` `mat[][], ``int` `m, ``int` `n, ``int` `r)``{``    ``// Creating an empty set``    ``LinkedHashSet s = ``new` `LinkedHashSet<>();`  `    ``// Count frequencies of elements in given row r``    ``for` `(``int` `j = ``0``; j < n; j++)``        ``s.add(mat[r][j]);` `    ``// Traverse through all remaining rows``    ``for` `(``int` `i = ``0``; i < m; i++)``    ``{``        ``// we do not need to check for given row r``        ``if` `(i == r)``            ``continue``;` `        ``// initialize hash i.e; count frequencies``        ``// of elements in row i``        ``int` `j;``        ``for` `(j = ``0``; j < n; j++)``            ``if` `(!s.contains(mat[i][j]))``                ``break``;``        ``if` `(j != n)``        ``continue``;` `        ``System.out.print(i+``", "``);``    ``}``}` `// Driver program to run the case``public` `static` `void` `main(String[] args)``{``    ``int` `m = ``4``, n = ``4``,r = ``3``;``    ``int` `mat[][] = {{``3``, ``1``, ``4``, ``2``},``                    ``{``1``, ``6``, ``9``, ``3``},``                    ``{``1``, ``2``, ``3``, ``4``},``                    ``{``4``, ``3``, ``2``, ``1``}};``    ``permutatedRows(mat, m, n, r);``}``}` `// This code has been contributed by 29AjayKumar`

## Python3

 `# Python program to find all``# permutations of a given row` `# Function to find all``# permuted rows of a given row r``def` `permutatedRows(mat, m, n, r):`  `    ``# Creating an empty set``    ``s``=``set``()` `    ``# Count frequencies of``    ``# elements in given row r``    ``for` `j ``in` `range``(n):``        ``s.add(mat[r][j])   ` `    ``# Traverse through all remaining rows``    ``for` `i ``in` `range``(m):` `        ``# we do not need to check``        ``# for given row r``        ``if` `i ``=``=` `r:``            ``continue` `        ``# initialize hash i.e``        ``# count frequencies``        ``# of elements in row i``        ``for` `j ``in` `range``(n):``            ``if` `mat[i][j] ``not` `in` `s:` `                ``# to avoid the case when last``                ``# element does not match``                ``j ``=` `j ``-` `2``                ``break``;``        ``if` `j ``+` `1` `!``=` `n:``            ``continue``        ``print``(i)``            ` `    `  `# Driver program to run the case``m ``=` `4``n ``=` `4``r ``=` `3``mat ``=` `[[``3``, ``1``, ``4``, ``2``],``       ``[``1``, ``6``, ``9``, ``3``],``       ``[``1``, ``2``, ``3``, ``4``],``       ``[``4``, ``3``, ``2``, ``1``]]` `permutatedRows(mat, m, n, r)` `# This code is contributed``# by Upendra Singh Bartwal.`

## C#

 `// C# program to find all permutations of a given row``using` `System;``using` `System.Collections.Generic;` `class` `GFG``{``    ` `static` `int` `MAX = 100;` `// Function to find all permuted rows of a given row r``static` `void` `permutatedRows(``int` `[,]mat, ``int` `m, ``int` `n, ``int` `r)``{``    ``// Creating an empty set``    ``HashSet<``int``> s = ``new` `HashSet<``int``>();`  `    ``// Count frequencies of elements in given row r``    ``for` `(``int` `j = 0; j < n; j++)``        ``s.Add(mat[r, j]);` `    ``// Traverse through all remaining rows``    ``for` `(``int` `i = 0; i < m; i++)``    ``{``        ``// we do not need to check for given row r``        ``if` `(i == r)``            ``continue``;` `        ``// initialize hash i.e; count frequencies``        ``// of elements in row i``        ``int` `j;``        ``for` `(j = 0; j < n; j++)``            ``if` `(!s.Contains(mat[i,j]))``                ``break``;``        ``if` `(j != n)``        ``continue``;` `        ``Console.Write(i+``", "``);``    ``}``}` `// Driver program to run the case``public` `static` `void` `Main(String[] args)``{``    ``int` `m = 4, n = 4,r = 3;``    ``int` `[,]mat = {{3, 1, 4, 2},``                    ``{1, 6, 9, 3},``                    ``{1, 2, 3, 4},``                    ``{4, 3, 2, 1}};``    ``permutatedRows(mat, m, n, r);``}``}` `/* This code contributed by PrinciRaj1992 */`

## Javascript

 ``

Output

`0, 2, `

Time complexity: O(m*n)
Auxiliary space: O(n)

Another approach to the solution is using the Standard Template Library(STL):

## CPP

 `// C++ program to find all permutations of a given row``#include``#define MAX 100` `using` `namespace` `std;` `// Function to find all permuted rows of a given row r``void` `permutatedRows(``int` `mat[][MAX], ``int` `m, ``int` `n, ``int` `r)``{``   ``for` `(``int` `i=0; i

Output

`0,2,`

Exercise :
Extend the above solution to work for an input matrix where all elements of a row don’t have to be distinct. (Hit: We can use Hash Map instead of a Hash Set)

This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up