Skip to content
Related Articles

Related Articles

Improve Article

Find parent of given node in a Binary Tree with given postorder traversal

  • Difficulty Level : Hard
  • Last Updated : 22 Jun, 2021
Geek Week

Given two integers N and K where N denotes the height of a binary tree, the task is to find the parent of the node with value K in a binary tree whose postorder traversal is first 

2^{N}-1
 

natural numbers 

(1, 2, ... 2^{N}-1)

For N = 3, the Tree will be -

      7
    /   \
   3     6
 /   \  /  \
1     2 4   5

 



Examples: 

 

Input: N = 4, K = 5 
Output:
Explanation: 
Parent of the node 5 is 6. As shown in the tree above.
Input: N = 5, K = 3 
Output:
Explanation: 
Parent of the node 3 is 7. As shown in the tree above. 

 

Naive Approach: A simple approach is to build the tree according to the following pattern and then traverse the whole tree to find the parent of a given node.
Efficient Approach: The idea is to use a binary search to find the parent of the node. As we know the binary Tree of Height N has 

2^{N}-1
 

nodes. Therefore, the search space for the binary search will be 1 to 

2^{N}-1
 



Now each node has children value either 

\frac{X}{2}
 

or 

X-1
 

Therefore, parents of such nodes can be found easily.
Below is the implementation of the above approach:
 

 

C++




// C++ implementation to find the
// parent of the given node K in
// a binary tree whose post-order
// traversal is N natural numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the parent
// of the given node
int findParent(int height, int node)
{
    int start = 1;
    int end = pow(2, height) - 1;
 
    // Condition to check whether
    // the given node is a root node.
    // if it is then return -1 because
    // root node has no parent
    if (end == node)
        return -1;
 
    // Loop till we found
    // the given node
    while (node >= 1) {
        end = end - 1;
 
        // Finding the middle node of the
        // tree because at every level
        // tree parent is
        // divided into two halves
        int mid = start
                  + (end - start)
                        / 2;
 
        // if the node is found return
        // the parent always the child
        // nodes of every node
        // is node/2 or (node-1)
        if (mid == node || end == node) {
            return (end + 1);
        }
 
        // if the node to be found
        // is greater than the mid
        // search for left subtree else
        // search in right subtree
        else if (node < mid) {
            end = mid;
        }
        else {
            start = mid;
        }
    }
}
 
// Driver Code
int main()
{
    int height = 4;
    int node = 6;
 
    int k = findParent(height, node);
    cout << k;
 
    return 0;
}

Java




// Java implementation to find the
// parent of the given node K in
// a binary tree whose post-order
// traversal is N natural numbers
import java.util.*;
class GFG{
 
// Function to find the parent
// of the given node
static int findParent(int height,
                      int node)
{
  int start = 1;
  int end = (int)Math.pow(2, height) - 1;
 
  // Condition to check whether
  // the given node is a root node.
  // if it is then return -1 because
  // root node has no parent
  if (end == node)
    return -1;
 
  // Loop till we found
  // the given node
  while (node >= 1)
  {
    end = end - 1;
 
    // Finding the middle node of the
    // tree because at every level
    // tree parent is
    // divided into two halves
    int mid = start + (end - start) / 2;
 
    // if the node is found return
    // the parent always the child
    // nodes of every node
    // is node*/2 or (node-1)
    if (mid == node || end == node)
    {
      return (end + 1);
    }
 
    // if the node to be found
    // is greater than the mid
    // search for left subtree else
    // search in right subtree
    else if (node < mid)
    {
      end = mid;
    }
    else
    {
      start = mid;
    }
  }
  return -1;
}
 
// Driver Code
public static void main(String[] args)
{
  int height = 4;
  int node = 6;
  int k = findParent(height, node);
  System.out.print(k);
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python implementation to find the
# parent of the given node
 
import math
 
# Function to find the parent
# of the given node
def findParent(height, node):
 
    start = 1
    end = pow(2, height) - 1
 
    # Check whether the given node
    # is a root node.if it is then
    # return -1 because root
    # node has no parent
    if (end == node):
        return -1
 
    # Loop till we found
    # the given node
    while(node >= 1):
 
        end = end - 1
 
        # Find the middle node of the
        # tree because at every level
        # tree parent is divided
        # into two halves
        mid = start + (end - start)//2
 
        # if the node is found
        # return the parent
        # always the child nodes of every
        # node is node / 2 or (node-1)
        if(mid == node or end == node):
            return (end + 1)
         
        # if the node to be found is greater
        # than the mid search for left
        # subtree else search in right subtree
        elif (node < mid):
            end = mid
 
        else:
            start = mid
 
# Driver code
if __name__ == "__main__":
    height = 4
    node = 6
     
    # Function Call
    k = findParent(height, node)
    print(k)

C#




// C# implementation to find the
// parent of the given node K in
// a binary tree whose post-order
// traversal is N natural numbers
using System;
class GFG{
 
// Function to find the parent
// of the given node
static int findParent(int height,
                      int node)
{
  int start = 1;
  int end = (int)Math.Pow(2, height) - 1;
 
  // Condition to check whether
  // the given node is a root node.
  // if it is then return -1 because
  // root node has no parent
  if (end == node)
    return -1;
 
  // Loop till we found
  // the given node
  while (node >= 1)
  {
    end = end - 1;
 
    // Finding the middle node of the
    // tree because at every level
    // tree parent is
    // divided into two halves
    int mid = start + (end - start) / 2;
 
    // if the node is found return
    // the parent always the child
    // nodes of every node
    // is node*/2 or (node-1)
    if (mid == node || end == node)
    {
      return (end + 1);
    }
 
    // if the node to be found
    // is greater than the mid
    // search for left subtree else
    // search in right subtree
    else if (node < mid)
    {
      end = mid;
    }
    else
    {
      start = mid;
    }
  }
  return -1;
}
 
// Driver Code
public static void Main(String[] args)
{
  int height = 4;
  int node = 6;
  int k = findParent(height, node);
  Console.Write(k);
}
}
 
// This code is contributed by Princi Singh

Javascript




<script>
    // Javascript implementation to find the
    // parent of the given node K in
    // a binary tree whose post-order
    // traversal is N natural numbers
     
    // Function to find the parent
    // of the given node
    function findParent(height, node)
    {
      let start = 1;
      let end = Math.pow(2, height) - 1;
 
      // Condition to check whether
      // the given node is a root node.
      // if it is then return -1 because
      // root node has no parent
      if (end == node)
        return -1;
 
      // Loop till we found
      // the given node
      while (node >= 1)
      {
        end = end - 1;
 
        // Finding the middle node of the
        // tree because at every level
        // tree parent is
        // divided into two halves
        let mid = start + parseInt((end - start) / 2, 10);
 
        // if the node is found return
        // the parent always the child
        // nodes of every node
        // is node*/2 or (node-1)
        if (mid == node || end == node)
        {
          return (end + 1);
        }
 
        // if the node to be found
        // is greater than the mid
        // search for left subtree else
        // search in right subtree
        else if (node < mid)
        {
          end = mid;
        }
        else
        {
          start = mid;
        }
      }
      return -1;
    }
     
    let height = 4;
    let node = 6;
    let k = findParent(height, node);
    document.write(k);
  
 // This code is contributed by divyeshrabadiya07.
</script>
Output: 
7

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :