Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find all pairs (a, b) in an array such that a % b = k

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array with distinct elements, the task is to find the pairs in the array such that a % b = k, where k is a given integer.

Examples : 

Input  :  arr[] = {2, 3, 5, 4, 7}   
              k = 3
Output :  (7, 4), (3, 4), (3, 5), (3, 7)
7 % 4 = 3
3 % 4 = 3
3 % 5 = 3
3 % 7 = 3
Recommended Practice

A Naive Solution is to make all pairs one by one and check their modulo is equal to k or not. If equals to k, then print that pair.  

Implementation:

C++




// C++ implementation to find such pairs
#include <bits/stdc++.h>
using namespace std;
 
// Function to find pair such that (a % b = k)
bool printPairs(int arr[], int n, int k)
{
    bool isPairFound = true;
 
    // Consider each and every pair
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            // Print if their modulo equals to k
            if (i != j && arr[i] % arr[j] == k) {
                cout << "(" << arr[i] << ", "
                     << arr[j] << ")"
                     << " ";
                isPairFound = true;
            }
        }
    }
 
    return isPairFound;
}
 
// Driver program
int main()
{
    int arr[] = { 2, 3, 5, 4, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 3;
 
    if (printPairs(arr, n, k) == false)
        cout << "No such pair exists";
 
    return 0;
}

Java




// Java implementation to find such pairs
 
class Test {
    // method to find pair such that (a % b = k)
    static boolean printPairs(int arr[], int n, int k)
    {
        boolean isPairFound = true;
 
        // Consider each and every pair
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                // Print if their modulo equals to k
                if (i != j && arr[i] % arr[j] == k) {
                    System.out.print("(" + arr[i] + ", " + arr[j] + ")"
                                     + " ");
                    isPairFound = true;
                }
            }
        }
 
        return isPairFound;
    }
 
    // Driver method
    public static void main(String args[])
    {
        int arr[] = { 2, 3, 5, 4, 7 };
        int k = 3;
 
        if (printPairs(arr, arr.length, k) == false)
            System.out.println("No such pair exists");
    }
}

Python3




# Python3 implementation to find such pairs
 
# Function to find pair such that (a % b = k)
def printPairs(arr, n, k):
 
    isPairFound = True
 
    # Consider each and every pair
    for i in range(0, n):
     
        for j in range(0, n):
         
            # Print if their modulo equals to k
            if (i != j and arr[i] % arr[j] == k):
             
                print("(", arr[i], ", ", arr[j], ")",
                                 sep = "", end = " ")
                isPairFound = True
             
    return isPairFound
 
# Driver Code
arr = [2, 3, 5, 4, 7]
n = len(arr)
k = 3
if (printPairs(arr, n, k) == False):
    print("No such pair exists")
 
# This article is contributed by Smitha Dinesh Semwal.

C#




// C# implementation to find such pair
using System;
 
public class GFG {
     
    // method to find pair such that (a % b = k)
    static bool printPairs(int[] arr, int n, int k)
    {
        bool isPairFound = true;
 
        // Consider each and every pair
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++)
            {
                // Print if their modulo equals to k
                if (i != j && arr[i] % arr[j] == k)
                {
                    Console.Write("(" + arr[i] + ", "
                                + arr[j] + ")" + " ");
                    isPairFound = true;
                }
            }
        }
 
        return isPairFound;
    }
 
    // Driver method
    public static void Main()
    {
        int[] arr = { 2, 3, 5, 4, 7 };
        int k = 3;
 
        if (printPairs(arr, arr.Length, k) == false)
            Console.WriteLine("No such pair exists");
    }
}
 
// This code is contributed by Sam007

PHP




<?php
// PHP implementation to
// find such pairs
 
// Function to find pair
// such that (a % b = k)
function printPairs($arr, $n, $k)
{
    $isPairFound = true;
 
    // Consider each and every pair
    for ($i = 0; $i < $n; $i++)
    {
        for ( $j = 0; $j < $n; $j++)
        {
            // Print if their modulo
            // equals to k
            if ($i != $j && $arr[$i] %
                            $arr[$j] == $k)
            {
                echo "(" , $arr[$i] , ", ",
                       $arr[$j] , ")", " ";
                $isPairFound = true;
            }
        }
    }
 
    return $isPairFound;
}
 
// Driver Code
$arr = array(2, 3, 5, 4, 7);
$n = sizeof($arr);
$k = 3;
 
if (printPairs($arr, $n, $k) == false)
    echo "No such pair exists";
 
// This code is contributed by ajit
?>

Javascript




<script>
    // Javascript implementation to find such pair
     
    // method to find pair such that (a % b = k)
    function printPairs(arr, n, k)
    {
        let isPairFound = true;
   
        // Consider each and every pair
        for (let i = 0; i < n; i++) {
            for (let j = 0; j < n; j++)
            {
                // Print if their modulo equals to k
                if (i != j && arr[i] % arr[j] == k)
                {
                    document.write("(" + arr[i] + ", " + arr[j] + ")" + " ");
                    isPairFound = true;
                }
            }
        }
   
        return isPairFound;
    }
     
    let arr = [ 2, 3, 5, 4, 7 ];
    let k = 3;
 
    if (printPairs(arr, arr.length, k) == false)
      document.write("No such pair exists");
 
</script>

Output

(3, 5) (3, 4) (3, 7) (7, 4) 

Time Complexity : O(n2)
Auxiliary Space: O(1)

An Efficient solution is based on below observations : 

  1. If k itself is present in arr[], then k forms a pair with all elements arr[i] where k < arr[i]. For all such arr[i], we have k % arr[i] = k.
  2. For all elements greater than or equal to k, we use the following fact.
   If arr[i] % arr[j] = k, 
   ==> arr[i] = x * arr[j] + k
   ==> (arr[i] - k) = x * arr[j]
  We find all divisors of (arr[i] - k)
  and see if they are present in arr[].

To quickly check if an element is present in the array, we use hashing. 

Implementation:

C++




// C++ program to find all pairs such that
// a % b = k.
#include <bits/stdc++.h>
using namespace std;
 
// Utility function to find the divisors of
// n and store in vector v[]
vector<int> findDivisors(int n)
{
    vector<int> v;
 
    // Vector is used to store  the divisors
    for (int i = 1; i <= sqrt(n); i++) {
        if (n % i == 0) {
            // If n is a square number, push
            // only one occurrence
            if (n / i == i)
                v.push_back(i);
            else {
                v.push_back(i);
                v.push_back(n / i);
            }
        }
    }
    return v;
}
 
// Function to find pairs such that (a%b = k)
bool printPairs(int arr[], int n, int k)
{
    // Store all the elements in the map
    // to use map as hash for finding elements
    // in O(1) time.
    unordered_map<int, bool> occ;
    for (int i = 0; i < n; i++)
        occ[arr[i]] = true;
 
    bool isPairFound = false;
    for (int i = 0; i < n; i++) {
        // Print all the pairs with (a, b) as
        // (k, numbers greater than k) as
        // k % (num (> k)) = k i.e. 2%4 = 2
        if (occ[k] && k < arr[i]) {
            cout << "(" << k << ", " << arr[i] << ") ";
            isPairFound = true;
        }
 
        // Now check for the current element as 'a'
        // how many b exists such that a%b = k
        if (arr[i] >= k) {
            // find all the divisors of (arr[i]-k)
            vector<int> v = findDivisors(arr[i] - k);
 
            // Check for each divisor i.e. arr[i] % b = k
            // or not, if yes then print that pair.
            for (int j = 0; j < v.size(); j++) {
                if (arr[i] % v[j] == k && arr[i] != v[j] && occ[v[j]]) {
                    cout << "(" << arr[i] << ", "
                         << v[j] << ") ";
                    isPairFound = true;
                }
            }
 
            // Clear vector
            v.clear();
        }
    }
 
    return isPairFound;
}
 
// Driver program
int main()
{
    int arr[] = { 3, 1, 2, 5, 4 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int k = 2;
 
    if (printPairs(arr, n, k) == false)
        cout << "No such pair exists";
    return 0;
}

Java




// Java program to find all pairs such that
// a % b = k.
 
import java.util.HashMap;
import java.util.Vector;
 
class Test {
    // Utility method to find the divisors of
    // n and store in vector v[]
    static Vector<Integer> findDivisors(int n)
    {
        Vector<Integer> v = new Vector<>();
 
        // Vector is used to store  the divisors
        for (int i = 1; i <= Math.sqrt(n); i++) {
            if (n % i == 0) {
                // If n is a square number, push
                // only one occurrence
                if (n / i == i)
                    v.add(i);
                else {
                    v.add(i);
                    v.add(n / i);
                }
            }
        }
        return v;
    }
 
    // method to find pairs such that (a%b = k)
    static boolean printPairs(int arr[], int n, int k)
    {
        // Store all the elements in the map
        // to use map as hash for finding elements
        // in O(1) time.
        HashMap<Integer, Boolean> occ = new HashMap<>();
        for (int i = 0; i < n; i++)
            occ.put(arr[i], true);
 
        boolean isPairFound = false;
        for (int i = 0; i < n; i++) {
            // Print all the pairs with (a, b) as
            // (k, numbers greater than k) as
            // k % (num (> k)) = k i.e. 2%4 = 2
            if (occ.get(k) && k < arr[i]) {
                System.out.print("(" + k + ", " + arr[i] + ") ");
                isPairFound = true;
            }
 
            // Now check for the current element as 'a'
            // how many b exists such that a%b = k
            if (arr[i] >= k) {
                // find all the divisors of (arr[i]-k)
                Vector<Integer> v = findDivisors(arr[i] - k);
 
                // Check for each divisor i.e. arr[i] % b = k
                // or not, if yes then print that pair.
                for (int j = 0; j < v.size(); j++) {
                    if (arr[i] % v.get(j) == k && arr[i] != v.get(j) && occ.get(v.get(j))) {
                        System.out.print("(" + arr[i] + ", "
                                         + v.get(j) + ") ");
                        isPairFound = true;
                    }
                }
 
                // Clear vector
                v.clear();
            }
        }
 
        return isPairFound;
    }
 
    // Driver method
    public static void main(String args[])
    {
        int arr[] = { 3, 1, 2, 5, 4 };
        int k = 2;
 
        if (printPairs(arr, arr.length, k) == false)
            System.out.println("No such pair exists");
    }
}

Python3




# Python3 program to find all pairs
# such that a % b = k.
  
# Utility function to find the divisors
# of n and store in vector v[]
import math as mt
 
def findDivisors(n):
 
    v = []
 
    # Vector is used to store the divisors
    for i in range(1, mt.floor(n**(.5)) + 1):
        if (n % i == 0):
             
            # If n is a square number, push
            # only one occurrence
            if (n / i == i):
                v.append(i)
            else:
                v.append(i)
                v.append(n // i)
                 
    return v
 
# Function to find pairs such that (a%b = k)
def printPairs(arr, n, k):
 
    # Store all the elements in the map
    # to use map as hash for finding elements
    # in O(1) time.
    occ = dict()
    for i in range(n):
        occ[arr[i]] = True
 
    isPairFound = False
 
    for i in range(n):
         
        # Print all the pairs with (a, b) as
        # (k, numbers greater than k) as
        # k % (num (> k)) = k i.e. 2%4 = 2
        if (occ[k] and k < arr[i]):
            print("(", k, ",", arr[i], ")", end = " ")
            isPairFound = True
 
        # Now check for the current element as 'a'
        # how many b exists such that a%b = k
        if (arr[i] >= k):
             
            # find all the divisors of (arr[i]-k)
            v = findDivisors(arr[i] - k)
 
            # Check for each divisor i.e. arr[i] % b = k
            # or not, if yes then print that pair.
            for j in range(len(v)):
                if (arr[i] % v[j] == k and
                    arr[i] != v[j] and
                    occ[v[j]]):
                    print("(", arr[i], ",", v[j],
                                       ")", end = " ")
                    isPairFound = True
 
    return isPairFound
 
# Driver Code
arr = [3, 1, 2, 5, 4]
n = len(arr)
k = 2
 
if (printPairs(arr, n, k) == False):
    print("No such pair exists")
 
# This code is contributed by mohit kumar

C#




// C# program to find all pairs
// such that a % b = k.
using System;
using System.Collections.Generic;
 
class GFG
{
// Utility method to find the divisors
// of n and store in vector v[]
public static List<int> findDivisors(int n)
{
    List<int> v = new List<int>();
 
    // Vector is used to store
    // the divisors
    for (int i = 1;
             i <= Math.Sqrt(n); i++)
    {
        if (n % i == 0)
        {
            // If n is a square number,
            // push only one occurrence
            if (n / i == i)
            {
                v.Add(i);
            }
            else
            {
                v.Add(i);
                v.Add(n / i);
            }
        }
    }
    return v;
}
 
// method to find pairs such
// that (a%b = k)
public static bool printPairs(int[] arr,
                              int n, int k)
{
    // Store all the elements in the
    // map to use map as hash for
    // finding elements in O(1) time.
    Dictionary<int,
               bool> occ = new Dictionary<int,
                                          bool>();
    for (int i = 0; i < n; i++)
    {
        occ[arr[i]] = true;
    }
 
    bool isPairFound = false;
    for (int i = 0; i < n; i++)
    {
        // Print all the pairs with (a, b) as
        // (k, numbers greater than k) as
        // k % (num (> k)) = k i.e. 2%4 = 2
        if (occ[k] && k < arr[i])
        {
            Console.Write("(" + k + ", " +
                           arr[i] + ") ");
            isPairFound = true;
        }
 
        // Now check for the current element
        // as 'a' how many b exists such that
        // a%b = k
        if (arr[i] >= k)
        {
            // find all the divisors of (arr[i]-k)
            List<int> v = findDivisors(arr[i] - k);
 
            // Check for each divisor i.e.
            // arr[i] % b = k or not, if
            // yes then print that pair.
            for (int j = 0; j < v.Count; j++)
            {
                if (arr[i] % v[j] == k &&
                    arr[i] != v[j] && occ[v[j]])
                {
                    Console.Write("(" + arr[i] +
                                  ", " + v[j] + ") ");
                    isPairFound = true;
                }
            }
 
            // Clear vector
            v.Clear();
        }
    }
 
    return isPairFound;
}
 
// Driver Code
public static void Main(string[] args)
{
    int[] arr = new int[] {3, 1, 2, 5, 4};
    int k = 2;
 
    if (printPairs(arr, arr.Length, k) == false)
    {
        Console.WriteLine("No such pair exists");
    }
}
}
 
// This code is contributed by Shrikant13

Javascript




<script>
 
// JavaScript program to find all pairs such that
// a % b = k.   
     
    // Utility method to find the divisors of
    // n and store in vector v[]
    function findDivisors(n)
    {
        let v = [];
  
        // Vector is used to store  the divisors
        for (let i = 1; i <= Math.sqrt(n); i++)
        {
            if (n % i == 0) {
                // If n is a square number, push
                // only one occurrence
                if (n / i == i)
                    v.push(i);
                else {
                    v.push(i);
                    v.push(Math.floor(n / i));
                }
            }
        }
        return v;
    }
     
    // method to find pairs such that (a%b = k)
    function printPairs(arr,n,k)
    {
        // Store all the elements in the map
        // to use map as hash for finding elements
        // in O(1) time.
        let occ = new Map();
        for (let i = 0; i < n; i++)
            occ.set(arr[i], true);
  
        let isPairFound = false;
        for (let i = 0; i < n; i++) {
            // Print all the pairs with (a, b) as
            // (k, numbers greater than k) as
            // k % (num (> k)) = k i.e. 2%4 = 2
            if (occ.get(k) && k < arr[i]) {
                document.write("(" + k + ", " +
                arr[i] + ") ");
                isPairFound = true;
            }
  
            // Now check for the current element as 'a'
            // how many b exists such that a%b = k
            if (arr[i] >= k) {
                // find all the divisors of (arr[i]-k)
                let v = findDivisors(arr[i] - k);
  
                // Check for each divisor
                // i.e. arr[i] % b = k
                // or not, if yes then
                // print that pair.
                for (let j = 0; j < v.length; j++)
                {
                    if (arr[i] % v[j] == k &&
                    arr[i] != v[j] &&
                    occ.get(v[j]))
                    {
                        document.write("(" + arr[i] + ", "
                                         + v[j] + ") ");
                        isPairFound = true;
                    }
                }
  
                // Clear vector
                v=[];
            }
        }
  
        return isPairFound;
    }
     
    // Driver method
    let arr=[3, 1, 2, 5, 4 ];
    let k = 2;
    if (printPairs(arr, arr.length, k) == false)
            document.write("No such pair exists");
     
 
// This code is contributed by unknown2108
 
</script>

Output

(2, 3) (2, 5) (5, 3) (2, 4) 

Time Complexity: O(n* sqrt(max)) where max is the maximum element in the array.
Auxiliary Space: O(n)

This article is contributed by Aarti_Rathi and Sahil Chhabra. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks. 


My Personal Notes arrow_drop_up
Last Updated : 13 Jul, 2022
Like Article
Save Article
Similar Reads
Related Tutorials