Given a number** N**, the task is to find a pair of integers in the range **[2, N]** with maximum GCD.**Examples:**

Input:N = 10Output:5Explaination:

Maximum possible GCD between all possible pairs is 5 which occurs for the pair (10, 5).Input:N = 13Output:6Explaination:

Maximum possible GCD between all possible pairs is 6 which occurs for the pair (12, 6).

**Approach:**

Follow the steps below to solve the problem:

- If
**N**is even, return the pair**{N, N / 2}**.

Illustration:

IfN = 10, Maximum possible GCD for any pair is 5( for the pair {5, 10}).

IfN = 20, Maximum possible GCD for any pair is 10( for the pair {20, 10}).

- If
**N**is odd, then return the pair**{N – 1, (N – 1) / 2}**.

Illustration:

IfN = 11, Maximum possible GCD for any pair is 5( for the pair {5, 10}).

IfN = 21, Maximum possible GCD for any pair is 10( for the pair {20, 10}).

- Below is the implementation of the above approach:

## C++

`// C++ Program to find a pair of` `// integers less than or equal` `// to N such that their GCD` `// is maximum` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find the required` `// pair whose GCD is maximum` `void` `solve(` `int` `N)` `{` ` ` `// If N is even` ` ` `if` `(N % 2 == 0) {` ` ` `cout << N / 2 << ` `" "` ` ` `<< N << endl;` ` ` `}` ` ` `// If N is odd` ` ` `else` `{` ` ` `cout << (N - 1) / 2 << ` `" "` ` ` `<< (N - 1) << endl;` ` ` `}` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `N = 10;` ` ` `solve(N);` ` ` `return` `0;` `}` |

## Java

`// Java program to find a pair of` `// integers less than or equal` `// to N such that their GCD` `// is maximum` `class` `GFG{` `// Function to find the required` `// pair whose GCD is maximum` `static` `void` `solve(` `int` `N)` `{` ` ` ` ` `// If N is even` ` ` `if` `(N % ` `2` `== ` `0` `)` ` ` `{` ` ` `System.out.print(N / ` `2` `+ ` `" "` `+` ` ` `N + ` `"\n"` `);` ` ` `}` ` ` ` ` `// If N is odd` ` ` `else` ` ` `{` ` ` `System.out.print((N - ` `1` `) / ` `2` `+ ` `" "` `+` ` ` `(N - ` `1` `) + ` `"\n"` `);` ` ` `}` `}` `// Driver Code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `N = ` `10` `;` ` ` ` ` `solve(N);` `}` `}` `// This code is contributed by Amit Katiyar` |

## Python3

`# Python3 Program to find a pair ` `# of integers less than or equal` `# to N such that their GCD` `# is maximum` `# Function to find the required` `# pair whose GCD is maximum` `def` `solve(N):` ` ` ` ` `# If N is even` ` ` `if` `(N ` `%` `2` `=` `=` `0` `):` ` ` `print` `(N ` `/` `/` `2` `, N)` ` ` ` ` `# If N is odd` ` ` `else` `:` ` ` `print` `((N ` `-` `1` `) ` `/` `/` `2` `, (N ` `-` `1` `))` ` ` `# Driver Code` `N ` `=` `10` `solve(N)` `# This code is contributed by divyamohan123` |

## C#

`// C# program to find a pair of` `// integers less than or equal` `// to N such that their GCD` `// is maximum` `using` `System;` `class` `GFG{` `// Function to find the required` `// pair whose GCD is maximum` `static` `void` `solve(` `int` `N)` `{` ` ` ` ` `// If N is even` ` ` `if` `(N % 2 == 0)` ` ` `{` ` ` `Console.Write(N / 2 + ` `" "` `+` ` ` `N + ` `"\n"` `);` ` ` `}` ` ` ` ` `// If N is odd` ` ` `else` ` ` `{` ` ` `Console.Write((N - 1) / 2 + ` `" "` `+` ` ` `(N - 1) + ` `"\n"` `);` ` ` `}` `}` `// Driver Code` `public` `static` `void` `Main(String[] args)` `{` ` ` `int` `N = 10;` ` ` ` ` `solve(N);` `}` `}` `// This code is contributed by shivanisinghss2110` |

## Javascript

`<script>` `// JavaScript program to find a pair of` `// integers less than or equal` `// to N such that their GCD` `// is maximum` ` ` `// Function to find the required` ` ` `// pair whose GCD is maximum` ` ` `function` `solve(N) {` ` ` `// If N is even` ` ` `if` `(N % 2 == 0) {` ` ` `document.write(N / 2 + ` `" "` `+ N + ` `"<br/>"` `);` ` ` `}` ` ` `// If N is odd` ` ` `else` `{` ` ` `document.write((N - 1) / 2 + ` `" "` `+ (N - 1) + ` `"<br/>"` `);` ` ` `}` ` ` `}` ` ` `// Driver Code` ` ` ` ` `var` `N = 10;` ` ` `solve(N);` `// This code is contributed by todaysgaurav` `</script>` |

**Output:**

5 10

**Time Complexity:**O(1)**Auxiliary Space:**O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.