Find numbers which are multiples of first array and factors of second array

Given two arrays A[] and B[], the task is to find the integers which are divisible by all the elements of array A[] and divide all the elements of array B[].

Examples:

Input: A[] = {1, 2, 2, 4}, B[] = {16, 32, 64}
Output: 4 8 16
4, 8 and 16 are the only numbers that
are multiples of all the elements of array A[]
and divide all the elements of array B[]



Input: A[] = {2, 3, 6}, B[] = {42, 84}
Output: 6 42

Approach: If X is a multiple of all the elements of the first array then X must be a multiple of the LCM of all the elements of the first array.
Similarly, If X is a factor of all the elements of the second array then it must be a factor of the GCD of all the elements of the second array and such X will exist only if GCD of the second array is divisible by the LCM of the first array.
If it is divisible then X can be any value from the range [LCM, GCD] which is a multiple of LCM and evenly divides GCD.

Below is the implementation of above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to return the LCM of two numbers
int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
  
// Function to print the requried numbers
void findNumbers(int a[], int n, int b[], int m)
{
  
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
  
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
  
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
  
    // No such element exists
    if (gcdB % lcmA != 0) {
        cout << "-1";
        return;
    }
  
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB) {
        if (gcdB % num == 0)
            cout << num << " ";
        num += lcmA;
    }
}
  
// Driver code
int main()
{
  
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
  
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
  
    findNumbers(a, n, b, m);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG
{
static int __gcd(int a, int b) 
    if (b == 0
        return a; 
    return __gcd(b, a % b); 
      
}
  
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
  
// Function to print the requried numbers
static void findNumbers(int a[], int n, 
                        int b[], int m)
{
  
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
  
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
  
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
  
    // No such element exists
    if (gcdB % lcmA != 0
    {
        System.out.print("-1");
        return;
    }
  
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB) 
    {
        if (gcdB % num == 0)
            System.out.print(num + " ");
        num += lcmA;
    }
}
  
// Driver code
public static void main(String[] args)
{
    int a[] = { 1, 2, 2, 4 };
    int b[] = { 16, 32, 64 };
  
    int n = a.length;
    int m = b.length;
  
    findNumbers(a, n, b, m);
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach 
from math import gcd
  
# Function to return the LCM of two numbers 
def lcm( x, y) :
      
    temp = (x * y) // gcd(x, y); 
    return temp; 
  
# Function to print the requried numbers 
def findNumbers(a, n, b, m) : 
  
    # To store the lcm of array a[] elements 
    # and the gcd of array b[] elements 
    lcmA = 1; __gcdB = 0
  
    # Finding LCM of first array 
    for i in range(n) : 
        lcmA = lcm(lcmA, a[i]); 
  
    # Finding GCD of second array 
    for i in range(m) : 
        __gcdB = gcd(__gcdB, b[i]); 
  
    # No such element exists 
    if (__gcdB % lcmA != 0) :
        print("-1"); 
        return
  
    # All the multiples of lcmA which are 
    # less than or equal to gcdB and evenly 
    # divide gcdB will satisfy the conditions 
    num = lcmA; 
    while (num <= __gcdB) :
        if (__gcdB % num == 0) :
            print(num, end = " "); 
              
        num += lcmA; 
  
# Driver code 
if __name__ == "__main__"
  
    a = [ 1, 2, 2, 4 ];
    b = [ 16, 32, 64 ];
      
    n = len(a);
    m = len(b);
      
    findNumbers(a, n, b, m); 
      
# This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
static int __gcd(int a, int b) 
    if (b == 0) 
        return a; 
    return __gcd(b, a % b); 
}
  
// Function to return the LCM of two numbers
static int lcm(int x, int y)
{
    int temp = (x * y) / __gcd(x, y);
    return temp;
}
  
// Function to print the requried numbers
static void findNumbers(int []a, int n, 
                        int []b, int m)
{
  
    // To store the lcm of array a[] elements
    // and the gcd of array b[] elements
    int lcmA = 1, gcdB = 0;
  
    // Finding LCM of first array
    for (int i = 0; i < n; i++)
        lcmA = lcm(lcmA, a[i]);
  
    // Finding GCD of second array
    for (int i = 0; i < m; i++)
        gcdB = __gcd(gcdB, b[i]);
  
    // No such element exists
    if (gcdB % lcmA != 0) 
    {
        Console.Write("-1");
        return;
    }
  
    // All the multiples of lcmA which are
    // less than or equal to gcdB and evenly
    // divide gcdB will satisfy the conditions
    int num = lcmA;
    while (num <= gcdB) 
    {
        if (gcdB % num == 0)
            Console.Write(num + " ");
        num += lcmA;
    }
}
  
// Driver code
public static void Main(String[] args)
{
    int []a = { 1, 2, 2, 4 };
    int []b = { 16, 32, 64 };
  
    int n = a.Length;
    int m = b.Length;
  
    findNumbers(a, n, b, m);
}
}
  
// This code is contributed by 29AjayKumar
chevron_right

Output:
4 8 16



Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : AnkitRai01, 29AjayKumar



Article Tags :
Practice Tags :