# Find numbers in between [L, R] which are divisible by all Array elements

Given an array **arr[]** containing **N** positive integers and two variables **L** and **R** indicating a range of integers from **L** to **R** (inclusive). The task is to print all the numbers between **L** to **R** which are divisible by all array elements. If no such value exists print -1.

Input:arr[] = {3, 5, 12}, L = 90, R = 280Output:120 180 240Explanation:120, 180, 240 are the numbers which are divisible by all the arr[] elements.

Input:arr[] = {4, 7, 13, 16}, L = 200, R = 600Output:-1

**Naive Approach:** In this approach for every element in range **[L, R]** check if it is divisible by all the elements of the array.

* Time Complexity:* O((R-L)*N)

*O(1)*

**Auxiliary Space:****Efficient Approach:** The given problem can be solved using basic math. Any element divisible by all the elements of the array is a multiple of the LCM of all the array elements. Find the multiples of LCM in the range [L, R] and store in an array. At last print the numbers stored in the array.

* Time Complexity:* O(N)

*O(R – L)*

**Auxiliary Space:****Space Optimized Approach:** Below steps can be used to solve the problem:

- Calculate the LCM of all the elements of given arr[]
- Now, check the
**LCM**for these conditions:- If
**(LCM < L and LCM*2 > R)**, then print -1. - If
**(LCM > R)**, then print -1.

- If
- Now, take the nearest value of
**L**(between**L**to**R**) which is divisible by the**LCM**, say**i**. - Now, start printing
**i**and increment it by**LCM**every time after printing, until it becomes greater than**R**.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to return Kth smallest` `// prime number if it exists` `void` `solve(` `int` `* arr, ` `int` `N, ` `int` `L, ` `int` `R)` `{` ` ` `// For storing the LCM` ` ` `int` `LCM = arr[0];` ` ` `// Loop to iterate the array` ` ` `for` `(` `int` `i = 1; i < N; i++) {` ` ` `// Taking LCM of numbers` ` ` `LCM = (LCM * arr[i]) /` ` ` `(__gcd(LCM, arr[i]));` ` ` `}` ` ` `// Checking if no elements is divisible` ` ` `// by all elements of given array of given` ` ` `// range, print -1` ` ` `if` `((LCM < L && LCM * 2 > R) || LCM > R) {` ` ` `cout << ` `"-1"` `;` ` ` `return` `;` ` ` `}` ` ` `// Taking nearest value of L which is` ` ` `// divisible by whole array` ` ` `int` `k = (L / LCM) * LCM;` ` ` `// If k is less than L, make it in the` ` ` `// range between L to R` ` ` `if` `(k < L)` ` ` `k = k + LCM;` ` ` `// Loop to iterate the from L to R` ` ` `// and printing the numbers which` ` ` `// are divisible by all array elements` ` ` `for` `(` `int` `i = k; i <= R; i = i + LCM) {` ` ` `cout << i << ` `' '` `;` ` ` `}` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `L = 90;` ` ` `int` `R = 280;` ` ` `int` `arr[] = { 3, 5, 12 };` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `solve(arr, N, L, R);` ` ` `return` `0;` `}` |

## Java

`// Java program for the above approach` `import` `java.util.*;` `class` `GFG{` `// Recursive function to return gcd of a and b` `static` `int` `__gcd(` `int` `a, ` `int` `b)` `{` ` ` ` ` `// Everything divides 0` ` ` `if` `(a == ` `0` `)` ` ` `return` `b;` ` ` `if` `(b == ` `0` `)` ` ` `return` `a;` ` ` ` ` `// Base case` ` ` `if` `(a == b)` ` ` `return` `a;` ` ` ` ` `// a is greater` ` ` `if` `(a > b)` ` ` `return` `__gcd(a - b, b);` ` ` ` ` `return` `__gcd(a, b - a);` `}` `// Function to return Kth smallest` `// prime number if it exists` `static` `void` `solve(` `int` `[] arr, ` `int` `N, ` `int` `L, ` `int` `R)` `{` ` ` ` ` `// For storing the LCM` ` ` `int` `LCM = arr[` `0` `];` ` ` `// Loop to iterate the array` ` ` `for` `(` `int` `i = ` `1` `; i < N; i++)` ` ` `{` ` ` ` ` `// Taking LCM of numbers` ` ` `LCM = (LCM * arr[i]) /` ` ` `(__gcd(LCM, arr[i]));` ` ` `}` ` ` `// Checking if no elements is divisible` ` ` `// by all elements of given array of given` ` ` `// range, print -1` ` ` `if` `((LCM < L && LCM * ` `2` `> R) || LCM > R)` ` ` `{` ` ` `System.out.println(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` `// Taking nearest value of L which is` ` ` `// divisible by whole array` ` ` `int` `k = (L / LCM) * LCM;` ` ` `// If k is less than L, make it in the` ` ` `// range between L to R` ` ` `if` `(k < L)` ` ` `k = k + LCM;` ` ` `// Loop to iterate the from L to R` ` ` `// and printing the numbers which` ` ` `// are divisible by all array elements` ` ` `for` `(` `int` `i = k; i <= R; i = i + LCM)` ` ` `{` ` ` `System.out.print(i + ` `" "` `);` ` ` `}` `}` `// Driver Code` `public` `static` `void` `main(String args[])` `{` ` ` `int` `L = ` `90` `;` ` ` `int` `R = ` `280` `;` ` ` `int` `arr[] = { ` `3` `, ` `5` `, ` `12` `};` ` ` `int` `N = arr.length;` ` ` ` ` `solve(arr, N, L, R);` `}` `}` `// This code is contributed by sanjoy_62` |

## Python3

`# Python program for the above approach` `# Recursive function to return gcd of a and b` `def` `__gcd(a, b):` ` ` `# Everything divides 0` ` ` `if` `(a ` `=` `=` `0` `):` ` ` `return` `b;` ` ` `if` `(b ` `=` `=` `0` `):` ` ` `return` `a;` ` ` `# Base case` ` ` `if` `(a ` `=` `=` `b):` ` ` `return` `a;` ` ` `# a is greater` ` ` `if` `(a > b):` ` ` `return` `__gcd(a ` `-` `b, b);` ` ` `return` `__gcd(a, b ` `-` `a);` `# Function to return Kth smallest` `# prime number if it exists` `def` `solve(arr, N, L, R):` ` ` ` ` `# For storing the LCM` ` ` `LCM ` `=` `arr[` `0` `];` ` ` `# Loop to iterate the array` ` ` `for` `i ` `in` `range` `(` `1` `, N):` ` ` ` ` `# Taking LCM of numbers` ` ` `LCM ` `=` `(LCM ` `*` `arr[i]) ` `/` `/` `(__gcd(LCM, arr[i]));` ` ` `# Checking if no elements is divisible` ` ` `# by all elements of given array of given` ` ` `# range, pr-1` ` ` `if` `((LCM < L ` `and` `LCM ` `*` `2` `> R) ` `or` `LCM > R):` ` ` `print` `(` `"-1"` `);` ` ` `return` `;` ` ` `# Taking nearest value of L which is` ` ` `# divisible by whole array` ` ` `k ` `=` `(L ` `/` `/` `LCM) ` `*` `LCM;` ` ` `# If k is less than L, make it in the` ` ` `# range between L to R` ` ` `if` `(k < L):` ` ` `k ` `=` `k ` `+` `LCM;` ` ` `# Loop to iterate the from L to R` ` ` `# and printing the numbers which` ` ` `# are divisible by all array elements` ` ` `for` `i ` `in` `range` `(k,R` `+` `1` `,LCM):` ` ` `print` `(i, end` `=` `" "` `);` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `L ` `=` `90` `;` ` ` `R ` `=` `280` `;` ` ` `arr ` `=` `[` `3` `, ` `5` `, ` `12` `];` ` ` `N ` `=` `len` `(arr);` ` ` `solve(arr, N, L, R);` `# This code is contributed by 29AjayKumar` |

## C#

`// C# program for the above approach` `using` `System;` `public` `class` `GFG{` ` ` `// Recursive function to return gcd of a and b` ` ` `static` `int` `__gcd(` `int` `a, ` `int` `b)` ` ` `{` ` ` `// Everything divides 0` ` ` `if` `(a == 0)` ` ` `return` `b;` ` ` `if` `(b == 0)` ` ` `return` `a;` ` ` `// Base case` ` ` `if` `(a == b)` ` ` `return` `a;` ` ` `// a is greater` ` ` `if` `(a > b)` ` ` `return` `__gcd(a - b, b);` ` ` `return` `__gcd(a, b - a);` ` ` `}` ` ` `// Function to return Kth smallest` ` ` `// prime number if it exists` ` ` `static` `void` `solve(` `int` `[] arr, ` `int` `N, ` `int` `L, ` `int` `R)` ` ` `{` ` ` `// For storing the LCM` ` ` `int` `LCM = arr[0];` ` ` `// Loop to iterate the array` ` ` `for` `(` `int` `i = 1; i < N; i++)` ` ` `{` ` ` `// Taking LCM of numbers` ` ` `LCM = (LCM * arr[i]) /` ` ` `(__gcd(LCM, arr[i]));` ` ` `}` ` ` `// Checking if no elements is divisible` ` ` `// by all elements of given array of given` ` ` `// range, print -1` ` ` `if` `((LCM < L && LCM * 2 > R) || LCM > R)` ` ` `{` ` ` `Console.WriteLine(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` `// Taking nearest value of L which is` ` ` `// divisible by whole array` ` ` `int` `k = (L / LCM) * LCM;` ` ` `// If k is less than L, make it in the` ` ` `// range between L to R` ` ` `if` `(k < L)` ` ` `k = k + LCM;` ` ` `// Loop to iterate the from L to R` ` ` `// and printing the numbers which` ` ` `// are divisible by all array elements` ` ` `for` `(` `int` `i = k; i <= R; i = i + LCM)` ` ` `{` ` ` `Console.Write(i + ` `" "` `);` ` ` `}` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `Main(String []args)` ` ` `{` ` ` `int` `L = 90;` ` ` `int` `R = 280;` ` ` `int` `[]arr = { 3, 5, 12 };` ` ` `int` `N = arr.Length;` ` ` `solve(arr, N, L, R);` ` ` `}` `}` `// This code is contributed by 29AjayKumar` |

## Javascript

` ` `<script>` ` ` `// JavaScript code for the above approach` ` ` `// Recursive function to return gcd of a and b` ` ` `function` `__gcd(a, b) {` ` ` `// Everything divides 0` ` ` `if` `(b == 0) {` ` ` `return` `a;` ` ` `}` ` ` `return` `__gcd(b, a % b);` ` ` `}` ` ` ` ` `// Function to return Kth smallest` ` ` `// prime number if it exists` ` ` `function` `solve(arr, N, L, R)` ` ` `{` ` ` ` ` `// For storing the LCM` ` ` `let LCM = arr[0];` ` ` `// Loop to iterate the array` ` ` `for` `(let i = 1; i < N; i++)` ` ` `{` ` ` ` ` `// Taking LCM of numbers` ` ` `LCM = Math.floor((LCM * arr[i]) /` ` ` `(__gcd(LCM, arr[i])));` ` ` `}` ` ` `// Checking if no elements is divisible` ` ` `// by all elements of given array of given` ` ` `// range, print -1` ` ` `if` `((LCM < L && LCM * 2 > R) || LCM > R) {` ` ` `document.write(` `"-1"` `);` ` ` `return` `;` ` ` `}` ` ` `// Taking nearest value of L which is` ` ` `// divisible by whole array` ` ` `let k = Math.floor((L / LCM)) * LCM;` ` ` `// If k is less than L, make it in the` ` ` `// range between L to R` ` ` `if` `(k < L)` ` ` `k = k + LCM;` ` ` `// Loop to iterate the from L to R` ` ` `// and printing the numbers which` ` ` `// are divisible by all array elements` ` ` `for` `(let i = k; i <= R; i = i + LCM) {` ` ` `document.write(i + ` `" "` `);` ` ` `}` ` ` `}` ` ` `// Driver Code` ` ` `let L = 90;` ` ` `let R = 280;` ` ` `let arr = [3, 5, 12];` ` ` `let N = arr.length;` ` ` `solve(arr, N, L, R);` `// This code is contributed by Potta Lokesh` ` ` `</script>` |

**Output**

120 180 240

* Time Complexity:* O(N)

**Auxiliary Space:****O(1)**