Find the number of valid parentheses expressions of given length

Given a number n find the number of valid parentheses expressions of that length.
Examples :

Input: 2
Output: 1 
There is only possible valid expression of length 2, "()"

Input: 4
Output: 2 
Possible valid expression of length 4 are "(())" and "()()" 

Input: 6
Output: 5
Possible valid expressions are ((())), ()(()), ()()(), (())() and (()())

This is mainly an application of Catalan Numbers. Total possible valid expressions for input n is n/2’th Catalan Number if n is even and 0 if n is odd.

Below given is the implementation :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find valid paranthesisations of length n
// The majority of code is taken from method 3 of
#include <bits/stdc++.h>
using namespace std;
  
// Returns value of Binomial Coefficient C(n, k)
unsigned long int binomialCoeff(unsigned int n,
                                unsigned int k)
{
    unsigned long int res = 1;
  
    // Since C(n, k) = C(n, n-k)
    if (k > n - k)
        k = n - k;
  
    // Calculate value of [n*(n-1)*---*(n-k+1)] / [k*(k-1)*---*1]
    for (int i = 0; i < k; ++i) {
        res *= (n - i);
        res /= (i + 1);
    }
  
    return res;
}
  
// A Binomial coefficient based function to 
// find nth catalan number in O(n) time
unsigned long int catalan(unsigned int n)
{
    // Calculate value of 2nCn
    unsigned long int c = binomialCoeff(2 * n, n);
  
    // return 2nCn/(n+1)
    return c / (n + 1);
}
  
// Function to find possible ways to put balanced
// parenthesis in an expression of length n
unsigned long int findWays(unsigned n)
{
    // If n is odd, not possible to 
    // create any valid parentheses
    if (n & 1)
        return 0;
  
    // Otherwise return n/2'th Catalan Numer
    return catalan(n / 2);
}
  
// Driver program to test above functions
int main()
{
    int n = 6;
    cout << "Total possible expressions of length "
         << n << " is " << findWays(6);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find valid paranthesisations of length n
// The majority of code is taken from method 3 of
  
class GFG {
      
    // Returns value of Binomial Coefficient C(n, k)
    static long binomialCoeff(int n, int k)
    {
        long res = 1;
  
        // Since C(n, k) = C(n, n-k)
        if (k > n - k)
            k = n - k;
  
        // Calculate value of [n*(n-1)*---*(n-k+1)] / [k*(k-1)*---*1]
        for (int i = 0; i < k; ++i) {
            res *= (n - i);
            res /= (i + 1);
        }
  
        return res;
    }
  
    // A Binomial coefficient based function to 
    // find nth catalan number in O(n) time
    static long catalan(int n)
    {
        // Calculate value of 2nCn
        long c = binomialCoeff(2 * n, n);
  
        // return 2nCn/(n+1)
        return c / (n + 1);
    }
  
    // Function to find possible ways to put balanced
    // parenthesis in an expression of length n
    static long findWays(int n)
    {
        // If n is odd, not possible to
        // create any valid parentheses
        if ((n & 1) != 0)
            return 0;
  
        // Otherwise return n/2'th Catalan Numer
        return catalan(n / 2);
    }
  
    // Driver program to test above functions
    public static void main(String[] args)
    {
        int n = 6;
        System.out.println("Total possible expressions of length "
                                          n + " is " + findWays(6));
    }
}
  
// This code is contributed by Smitha Dinesh Semwal

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find valid
# paranthesisations of length n
# The majority of code is taken
# from method 3 of
# https:#www.geeksforgeeks.org/program-nth-catalan-number/
  
# Returns value of Binomial 
# Coefficient C(n, k)
def binomialCoeff(n, k):
    res = 1;
  
    # Since C(n, k) = C(n, n-k)
    if (k > n - k):
        k = n - k;
  
    # Calculate value of [n*(n-1)*---
    # *(n-k+1)] / [k*(k-1)*---*1]
    for i in range(k): 
        res *= (n - i);
        res /= (i + 1);
  
    return int(res);
  
# A Binomial coefficient based 
# function to find nth catalan  
# number in O(n) time
def catalan(n):
      
    # Calculate value of 2nCn
    c = binomialCoeff(2 * n, n);
  
    # return 2nCn/(n+1)
    return int(c / (n + 1));
  
# Function to find possible
# ways to put balanced parenthesis
# in an expression of length n
def findWays(n):
      
    # If n is odd, not possible to 
    # create any valid parentheses
    if(n & 1):
        return 0;
  
    # Otherwise return n/2'th
    # Catalan Numer
    return catalan(int(n / 2));
  
# Driver Code
n = 6;
print("Total possible expressions of length"
                       n, "is", findWays(6));
      
# This code is contributed by mits

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find valid paranthesisations
// of length n The majority of code is taken
// from method 3 of 
using System;
  
class GFG {
      
    // Returns value of Binomial
    // Coefficient C(n, k)
    static long binomialCoeff(int n, int k)
    {
        long res = 1;
  
        // Since C(n, k) = C(n, n-k)
        if (k > n - k)
            k = n - k;
  
        // Calculate value of [n*(n-1)*---*
        // (n-k+1)] / [k*(k-1)*---*1]
        for (int i = 0; i < k; ++i)
        {
            res *= (n - i);
            res /= (i + 1);
        }
  
        return res;
    }
  
    // A Binomial coefficient based function to 
    // find nth catalan number in O(n) time
    static long catalan(int n)
    {
          
        // Calculate value of 2nCn
        long c = binomialCoeff(2 * n, n);
  
        // return 2nCn/(n+1)
        return c / (n + 1);
    }
  
    // Function to find possible ways to put 
    // balanced parenthesis in an expression
    // of length n
    static long findWays(int n)
    {
        // If n is odd, not possible to
        // create any valid parentheses
        if ((n & 1) != 0)
            return 0;
  
        // Otherwise return n/2'th
        // Catalan Numer
        return catalan(n / 2);
    }
  
    // Driver program to test 
    // above functions
    public static void Main()
    {
        int n = 6;
        Console.Write("Total possible expressions"
                       + "of length " + n + " is " 
                                   + findWays(6));
    }
}
  
// This code is contributed by nitin mittal.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find valid
// paranthesisations of length n
// The majority of code is taken
// from method 3 of
  
// Returns value of Binomial 
// Coefficient C(n, k)
function binomialCoeff($n, $k)
{
    $res = 1;
  
    // Since C(n, k) = C(n, n-k)
    if ($k > $n - $k)
        $k = $n - $k;
  
    // Calculate value of [n*(n-1)*---
    // *(n-k+1)] / [k*(k-1)*---*1]
    for ($i = 0; $i < $k; ++$i
    {
        $res *= ($n - $i);
        $res /= ($i + 1);
    }
  
    return $res;
}
  
// A Binomial coefficient 
// based function to find 
// nth catalan number in 
// O(n) time
function catalan($n)
{
      
    // Calculate value of 2nCn
    $c = binomialCoeff(2 * $n, $n);
  
    // return 2nCn/(n+1)
    return $c / ($n + 1);
}
  
// Function to find possible
// ways to put balanced
// parenthesis in an expression 
// of length n
function findWays($n)
{
      
    // If n is odd, not possible to 
    // create any valid parentheses
    if ($n & 1)
        return 0;
  
    // Otherwise return n/2'th
    // Catalan Numer
    return catalan($n / 2);
}
  
    // Driver Code
    $n = 6;
    echo "Total possible expressions of length "
                    , $n , " is " , findWays(6);
      
// This code is contributed by nitin mittal
?>

chevron_right



Output:

Total possible expressions of length 6 is 5

Time Complexity: O(n)

This article is contributed by Sachin. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up