Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Find number of Polygons lying inside each given Polygons on Cartesian Plane

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given N non-intersecting nested polygons, and a 2D array arr[][] of pairs, where each cell of the array represents the coordinates of the vertices of a polygon. The task is to find the count of polygons lying inside each polygon.

Examples:

Input: N = 3, arr[][][] = {{{-2, 2}, {-1, 1}, {2, 2}, {2, -1}, {1, -2}, {-2, -2}}, {{-1, -1}, {1, -1}, {1, 1}}, {{3, 3}, {-3, 3}, {-3, -3}, {3, -3}}}
Output: 1 0 2
Explanation:

  1. The polygon represented at index 0, is the green-colored polygon shown in the picture above.
  2. The polygon represented at index 1, is the blue-colored polygon shown in the picture above.
  3. The polygon represented at index 2, is the yellow-colored polygon shown in the picture above.

Therefore, there is 1 polygon inside the polygon at index 0, and 0 polygons inside the polygon at index 1, and 2 polygons inside the polygon at index 2.
 

Approach: The above problem can be solved based on the following observations:

  1. It can be observed that the polygon lying outside will have the largest X- coordinates. The maximum X-coordinates of the polygon will decrease, as one will go towards the inside, as it is given that polygons are nested and non-intersecting.
  2. Therefore, sorting the polygons by the maximum X-coordinate will give the correct order of the polygons lying.

Follow the steps below to solve the problem:

  • Initialize a 2D array say maximumX[][] of size N*2 to store the pair of maximum X-coordinates of a polygon and the index value of the polygon.
  • Iterate over the array arr[][] using the variable, i perform the following steps:
    • Initialize a variable, say maxX, to store the maximum X-coordinate of the current polygon.
    • Iterate over the array arr[i] using the variable j and in each iteration update the maxX as maxX = max(maxX, arr[i][j][0]).
    • Assign the pair {maxX, i} to maximumX[i].
  • Sort the array of pairs in descending order by the first element using a custom comparator.
  • Initialize an array, say res[], to store the count of polygons lying inside the current polygon.
  • Iterate over the range [0, N-1] using the variable i and in each iteration assign N-i-1 to res[maximumX[i][1]], as there are N-i-1 polygons lying inside the maximumX[i][1]th polygon.
  • Finally, after completing the above steps, print the array res[] as the answer.

Below is the implementation of the above approach:

C++




// C++ program for above approach
#include<bits/stdc++.h>
using namespace std;
 
// Function to calculate maximum sum
void findAllPolygons(int N,
                     vector<vector<vector<int> > > arr)
{
   
    // Stores the maximum X co-
    // ordinate of every polygon
    vector<pair<int, int> > maximumX(N);
 
    // Traverse the array arr[][]
    for (int i = 0; i < N; i++) {
 
        // Stores the max X co-
        // ordinate of current
        // polygon
        int maxX = INT_MIN;
 
        // Traverse over the vertices
        // of the current polygon
 
        for (int j = 0; j < arr[i].size(); j++) {
            // Update maxX
            maxX = max(maxX, arr[i][j][0]);
        }
 
        // Assign maxX to maximumX[i][0]
        maximumX[i].first = maxX;
 
        // Assign i to maximumX[i][1]
        maximumX[i].second = i;
    }
 
    // Sort the array of pairs
    // maximumX in descending
    // order by first element
    sort(maximumX.rbegin(), maximumX.rend());
 
    // Stores the count of
    // polygons lying inside
    // a polygon
    vector<int> res(N, 0);
 
    // Traverse the maximumX array
    for (int i = 0; i < N; i++) {
        // Update value at
        // maximumX[i][1] in
        // res
        res[maximumX[i].second] = N - 1 - i;
    }
 
    // Print the array res
    for (int i = 0; i < N; i++) {
        cout << res[i] << " ";
        // System.out.print(res[i] + " ");
    }
}
 
// Driver Code
int main()
{
    int N = 3;
    vector<vector<vector<int> > > arr = {
        { { -2, 2 },
          { -1, 1 },
          { 2, 2 },
          { 2, -1 },
          { 1, -2 },
          { -2, -2 } },
        { { -1, -1 }, { 1, -1 }, { 1, 1 } },
        { { 3, 3 }, { -3, 3 }, { -3, -3 }, { 3, -3 } }
    };
 
    findAllPolygons(N, arr);
    return 0;
}
 
// The code is contributed by Gautam goel (gautamgoel962)

Java




// Java program for above approach
import java.util.*;
 
class GFG {
 
    // Function to sort a 2D
    // array using custom a comparator
    public static void sort2d(int[][] arr)
    {
        Arrays.sort(arr, new Comparator<int[]>() {
            public int compare(final int[] a,
                               final int[] b)
            {
                if (a[0] < b[0])
                    return 1;
                else
                    return -1;
            }
        });
    }
 
    // Function to calculate maximum sum
    static void findAllPolygons(int N,
                                int[][][] arr)
    {
        // Stores the maximum X co-
        // ordinate of every polygon
        int[][] maximumX = new int[N][2];
 
        // Traverse the array arr[][]
        for (int i = 0; i < N; i++) {
 
            // Stores the max X co-
            // ordinate of current
            // polygon
            int maxX = Integer.MIN_VALUE;
 
            // Traverse over the vertices
            // of the current polygon
 
            for (int j = 0; j < arr[i].length; j++) {
                // Update maxX
                maxX = Math.max(maxX, arr[i][j][0]);
            }
 
            // Assign maxX to maximumX[i][0]
            maximumX[i][0] = maxX;
 
            // Assign i to maximumX[i][1]
            maximumX[i][1] = i;
        }
 
        // Sort the array of pairs
        // maximumX in descending
        // order by first element
        sort2d(maximumX);
 
        // Stores the count of
        // polygons lying inside
        // a polygon
        int[] res = new int[N];
 
        // Traverse the maximumX array
        for (int i = 0; i < N; i++) {
            // Update value at
            // maximumX[i][1] in
            // res
            res[maximumX[i][1]] = N - 1 - i;
        }
 
        // Print the array res
        for (int i = 0; i < N; i++) {
            System.out.print(res[i] + " ");
        }
    }
 
    // Driver Code
    public static void main(String[] args)
    {
 
        int N = 3;
        int[][][] arr = {
            { { -2, 2 }, { -1, 1 }, { 2, 2 }, { 2, -1 }, { 1, -2 }, { -2, -2 } },
            { { -1, -1 }, { 1, -1 }, { 1, 1 } },
            { { 3, 3 }, { -3, 3 }, { -3, -3 }, { 3, -3 } }
        };
 
        findAllPolygons(N, arr);
    }
}

Python3




# Python3 program for the above approach
 
# Function to sort a 2D array using custom a comparator
def sort2d(arr):
    arr.sort(key=lambda x: x[0], reverse=True)
 
# Function to calculate maximum sum
def findAllPolygons(N, arr):
    # Stores the maximum X co-ordinate of every polygon
    maximumX = []
 
    # Traverse the array arr[][]
    for i in range(N):
        # Stores the max X co-ordinate of current polygon
        maxX = float('-inf')
 
        # Traverse over the vertices of the current polygon
        for j in range(len(arr[i])):
            # Update maxX
            maxX = max(maxX, arr[i][j][0])
 
        # Assign maxX to maximumX[i][0]
        maximumX.append([maxX, i])
 
    # Sort the array of pairs maximumX in descending order by first element
    sort2d(maximumX)
 
    # Stores the count of polygons lying inside a polygon
    res = [0] * N
 
    # Traverse the maximumX array
    for i in range(N):
        # Update value at maximumX[i][1] in res
        res[maximumX[i][1]] = N - 1 - i
 
    # Print the array res
    print(" ".join(map(str, res)))
 
# Driver Code
N = 3
arr = [
    [
        [-2, 2],
        [-1, 1],
        [2, 2],
        [2, -1],
        [1, -2],
        [-2, -2]
    ],
    [
        [-1, -1],
        [1, -1],
        [1, 1]
    ],
    [
        [3, 3],
        [-3, 3],
        [-3, -3],
        [3, -3]
    ]
]
 
findAllPolygons(N, arr)

C#




using System;
using System.Linq;
 
class GFG
{
  // Function to sort a 2D array using a custom comparator
  public static void Sort2d(int[][] arr)
  {
    Array.Sort(arr, new Comparison<int[]>(
      (a, b) => a[0] < b[0] ? 1 : -1
    ));
  }
 
  // Function to calculate the maximum sum
  static void FindAllPolygons(int N, int[][][] arr)
  {
    // Stores the maximum X coordinate of every polygon
    int[][] maximumX = new int[N][];
 
    // Traverse the array arr[][]
    for (int i = 0; i < N; i++)
    {
      // Stores the max X coordinate of the current polygon
      int maxX = int.MinValue;
 
      // Traverse over the vertices of the current polygon
      for (int j = 0; j < arr[i].Length; j++)
      {
        // Update maxX
        maxX = Math.Max(maxX, arr[i][j][0]);
      }
 
      // Assign maxX to maximumX[i][0] and i to maximumX[i][1]
      maximumX[i] = new int[] { maxX, i };
    }
 
    // Sort the array of pairs maximumX in descending order by the first element
    Sort2d(maximumX);
 
    // Stores the count of polygons lying inside a polygon
    int[] res = new int[N];
 
    // Traverse the maximumX array
    for (int i = 0; i < N; i++)
    {
      // Update value at maximumX[i][1] in res
      res[maximumX[i][1]] = N - 1 - i;
    }
 
    // Print the array res
    for (int i = 0; i < N; i++)
    {
      Console.Write(res[i] + " ");
    }
  }
 
  // Driver Code
  static void Main(string[] args)
  {
    int N = 3;
    int[][][] arr = {
      new int[][] { new int[] { -2, 2 }, new int[] { -1, 1 }, new int[] { 2, 2 }, new int[] { 2, -1 }, new int[] { 1, -2 }, new int[] { -2, -2 } },
      new int[][] { new int[] { -1, -1 }, new int[] { 1, -1 }, new int[] { 1, 1 } },
      new int[][] { new int[] { 3, 3 }, new int[] { -3, 3 }, new int[] { -3, -3 }, new int[] { 3, -3 } }
    };
 
    FindAllPolygons(N, arr);
  }
}
 
// This code is contributed by phasing17.

Javascript




// JavaScript program for the above approach
 
// Function to sort a 2D array using custom a comparator
function sort2d(arr) {
    arr.sort(function(a, b) {
        if (a[0] < b[0]) {
            return 1;
        } else {
            return -1;
        }
    });
}
 
// Function to calculate maximum sum
function findAllPolygons(N, arr) {
    // Stores the maximum X co-ordinate of every polygon
    let maximumX = [];
 
    // Traverse the array arr[][]
    for (let i = 0; i < N; i++) {
        // Stores the max X co-ordinate of current polygon
        let maxX = Number.MIN_SAFE_INTEGER;
 
        // Traverse over the vertices of the current polygon
        for (let j = 0; j < arr[i].length; j++) {
            // Update maxX
            maxX = Math.max(maxX, arr[i][j][0]);
        }
 
        // Assign maxX to maximumX[i][0]
        maximumX[i] = [maxX, i];
    }
 
    // Sort the array of pairs maximumX in descending order by first element
    sort2d(maximumX);
 
    // Stores the count of polygons lying inside a polygon
    let res = [];
 
    // Traverse the maximumX array
    for (let i = 0; i < N; i++) {
        // Update value at maximumX[i][1] in res
        res[maximumX[i][1]] = N - 1 - i;
    }
 
    // Print the array res
    console.log(res.join(" "));
}
 
// Driver Code
let N = 3;
let arr = [
    [
        [-2, 2],
        [-1, 1],
        [2, 2],
        [2, -1],
        [1, -2],
        [-2, -2]
    ],
    [
        [-1, -1],
        [1, -1],
        [1, 1]
    ],
    [
        [3, 3],
        [-3, 3],
        [-3, -3],
        [3, -3]
    ]
];
 
findAllPolygons(N, arr);
 
// This code is contributed by phasing17.

Output

1 0 2 

Time Complexity: O(M + N log N), Where M maximum size of a polygon
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Last Updated : 15 Feb, 2023
Like Article
Save Article
Similar Reads
Related Tutorials