# Find the number of islands | Set 1 (Using DFS)

• Difficulty Level : Medium
• Last Updated : 24 Nov, 2021

Given a boolean 2D matrix, find the number of islands. A group of connected 1s forms an island. For example, the below matrix contains 5 islands
Example:

```Input : mat[][] = {{1, 1, 0, 0, 0},
{0, 1, 0, 0, 1},
{1, 0, 0, 1, 1},
{0, 0, 0, 0, 0},
{1, 0, 1, 0, 1}}
Output : 5```

This is a variation of the standard problem: “Counting the number of connected components in an undirected graph”.

Become a success story instead of just reading about them. Prepare for coding interviews at Amazon and other top product-based companies with our Amazon Test Series. Includes topic-wise practice questions on all important DSA topics along with 10 practice contests of 2 hours each. Designed by industry experts that will surely help you practice and sharpen your programming skills. Wait no more, start your preparation today!

Before we go to the problem, let us understand what is a connected component. A connected component of an undirected graph is a subgraph in which every two vertices are connected to each other by a path(s), and which is connected to no other vertices outside the subgraph.
For example, the graph shown below has three connected components.

A graph where all vertices are connected with each other has exactly one connected component, consisting of the whole graph. Such a graph with only one connected component is called a Strongly Connected Graph.
The problem can be easily solved by applying DFS() on each component. In each DFS() call, a component or a sub-graph is visited. We will call DFS on the next un-visited component. The number of calls to DFS() gives the number of connected components. BFS can also be used.
What is an island?
A group of connected 1s forms an island. For example, the below matrix contains 4 islands

A cell in 2D matrix can be connected to 8 neighbours. So, unlike standard DFS(), where we recursively call for all adjacent vertices, here we can recursively call for 8 neighbours only. We keep track of the visited 1s so that they are not visited again.

## C++

 `// C++ Program to count islands in boolean 2D matrix``#include ``using` `namespace` `std;`` ` `#define ROW 5``#define COL 5`` ` `// A function to check if a given``// cell (row, col) can be included in DFS``int` `isSafe(``int` `M[][COL], ``int` `row, ``int` `col,``           ``bool` `visited[][COL])``{``    ``// row number is in range, column``    ``// number is in range and value is 1``    ``// and not yet visited``    ``return` `(row >= 0) && (row < ROW) && (col >= 0) && (col < COL) && (M[row][col] && !visited[row][col]);``}`` ` `// A utility function to do DFS for a``// 2D boolean matrix. It only considers``// the 8 neighbours as adjacent vertices``void` `DFS(``int` `M[][COL], ``int` `row, ``int` `col,``         ``bool` `visited[][COL])``{``    ``// These arrays are used to get``    ``// row and column numbers of 8``    ``// neighbours of a given cell``    ``static` `int` `rowNbr[] = { -1, -1, -1, 0, 0, 1, 1, 1 };``    ``static` `int` `colNbr[] = { -1, 0, 1, -1, 1, -1, 0, 1 };`` ` `    ``// Mark this cell as visited``    ``visited[row][col] = ``true``;`` ` `    ``// Recur for all connected neighbours``    ``for` `(``int` `k = 0; k < 8; ++k)``        ``if` `(isSafe(M, row + rowNbr[k], col + colNbr[k], visited))``            ``DFS(M, row + rowNbr[k], col + colNbr[k], visited);``}`` ` `// The main function that returns``// count of islands in a given boolean``// 2D matrix``int` `countIslands(``int` `M[][COL])``{``    ``// Make a bool array to mark visited cells.``    ``// Initially all cells are unvisited``    ``bool` `visited[ROW][COL];``    ``memset``(visited, 0, ``sizeof``(visited));`` ` `    ``// Initialize count as 0 and``    ``// traverse through the all cells of``    ``// given matrix``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < ROW; ++i)``        ``for` `(``int` `j = 0; j < COL; ++j)`` ` `            ``// If a cell with value 1 is not``            ``if` `(M[i][j] && !visited[i][j]) {``                ``// visited yet, then new island found``                ``// Visit all cells in this island.``                ``DFS(M, i, j, visited);`` ` `                ``// and increment island count``                ``++count;``            ``}`` ` `    ``return` `count;``}`` ` `// Driver code``int` `main()``{``    ``int` `M[][COL] = { { 1, 1, 0, 0, 0 },``                     ``{ 0, 1, 0, 0, 1 },``                     ``{ 1, 0, 0, 1, 1 },``                     ``{ 0, 0, 0, 0, 0 },``                     ``{ 1, 0, 1, 0, 1 } };`` ` `    ``cout << ``"Number of islands is: "` `<< countIslands(M);`` ` `    ``return` `0;``}`` ` `// This is code is contributed by rathbhupendra`

## C

 `// Program to count islands in boolean 2D matrix``#include ``#include ``#include `` ` `#define ROW 5``#define COL 5`` ` `// A function to check if a given cell (row, col) can be included in DFS``int` `isSafe(``int` `M[][COL], ``int` `row, ``int` `col, ``bool` `visited[][COL])``{``    ``// row number is in range, column number is in range and value is 1``    ``// and not yet visited``    ``return` `(row >= 0) && (row < ROW) && (col >= 0) && (col < COL) && (M[row][col] && !visited[row][col]);``}`` ` `// A utility function to do DFS for a 2D boolean matrix. It only considers``// the 8 neighbours as adjacent vertices``void` `DFS(``int` `M[][COL], ``int` `row, ``int` `col, ``bool` `visited[][COL])``{``    ``// These arrays are used to get row and column numbers of 8 neighbours``    ``// of a given cell``    ``static` `int` `rowNbr[] = { -1, -1, -1, 0, 0, 1, 1, 1 };``    ``static` `int` `colNbr[] = { -1, 0, 1, -1, 1, -1, 0, 1 };`` ` `    ``// Mark this cell as visited``    ``visited[row][col] = ``true``;`` ` `    ``// Recur for all connected neighbours``    ``for` `(``int` `k = 0; k < 8; ++k)``        ``if` `(isSafe(M, row + rowNbr[k], col + colNbr[k], visited))``            ``DFS(M, row + rowNbr[k], col + colNbr[k], visited);``}`` ` `// The main function that returns count of islands in a given boolean``// 2D matrix``int` `countIslands(``int` `M[][COL])``{``    ``// Make a bool array to mark visited cells.``    ``// Initially all cells are unvisited``    ``bool` `visited[ROW][COL];``    ``memset``(visited, 0, ``sizeof``(visited));`` ` `    ``// Initialize count as 0 and traverse through the all cells of``    ``// given matrix``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < ROW; ++i)``        ``for` `(``int` `j = 0; j < COL; ++j)``            ``if` `(M[i][j] && !visited[i][j]) ``// If a cell with value 1 is not``            ``{ ``// visited yet, then new island found``                ``DFS(M, i, j, visited); ``// Visit all cells in this island.``                ``++count; ``// and increment island count``            ``}`` ` `    ``return` `count;``}`` ` `// Driver program to test above function``int` `main()``{``    ``int` `M[][COL] = { { 1, 1, 0, 0, 0 },``                     ``{ 0, 1, 0, 0, 1 },``                     ``{ 1, 0, 0, 1, 1 },``                     ``{ 0, 0, 0, 0, 0 },``                     ``{ 1, 0, 1, 0, 1 } };`` ` `    ``printf``(``"Number of islands is: %d\n"``, countIslands(M));`` ` `    ``return` `0;``}`

## Java

 `// Java program to count islands in boolean 2D matrix``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;`` ` `class` `Islands {``    ``// No of rows and columns``    ``static` `final` `int` `ROW = ``5``, COL = ``5``;`` ` `    ``// A function to check if a given cell (row, col) can``    ``// be included in DFS``    ``boolean` `isSafe(``int` `M[][], ``int` `row, ``int` `col,``                   ``boolean` `visited[][])``    ``{``        ``// row number is in range, column number is in range``        ``// and value is 1 and not yet visited``        ``return` `(row >= ``0``) && (row < ROW) && (col >= ``0``) && (col < COL) && (M[row][col] == ``1` `&& !visited[row][col]);``    ``}`` ` `    ``// A utility function to do DFS for a 2D boolean matrix.``    ``// It only considers the 8 neighbors as adjacent vertices``    ``void` `DFS(``int` `M[][], ``int` `row, ``int` `col, ``boolean` `visited[][])``    ``{``        ``// These arrays are used to get row and column numbers``        ``// of 8 neighbors of a given cell``        ``int` `rowNbr[] = ``new` `int``[] { -``1``, -``1``, -``1``, ``0``, ``0``, ``1``, ``1``, ``1` `};``        ``int` `colNbr[] = ``new` `int``[] { -``1``, ``0``, ``1``, -``1``, ``1``, -``1``, ``0``, ``1` `};`` ` `        ``// Mark this cell as visited``        ``visited[row][col] = ``true``;`` ` `        ``// Recur for all connected neighbours``        ``for` `(``int` `k = ``0``; k < ``8``; ++k)``            ``if` `(isSafe(M, row + rowNbr[k], col + colNbr[k], visited))``                ``DFS(M, row + rowNbr[k], col + colNbr[k], visited);``    ``}`` ` `    ``// The main function that returns count of islands in a given``    ``// boolean 2D matrix``    ``int` `countIslands(``int` `M[][])``    ``{``        ``// Make a bool array to mark visited cells.``        ``// Initially all cells are unvisited``        ``boolean` `visited[][] = ``new` `boolean``[ROW][COL];`` ` `        ``// Initialize count as 0 and traverse through the all cells``        ``// of given matrix``        ``int` `count = ``0``;``        ``for` `(``int` `i = ``0``; i < ROW; ++i)``            ``for` `(``int` `j = ``0``; j < COL; ++j)``                ``if` `(M[i][j] == ``1` `&& !visited[i][j]) ``// If a cell with``                ``{ ``// value 1 is not``                    ``// visited yet, then new island found, Visit all``                    ``// cells in this island and increment island count``                    ``DFS(M, i, j, visited);``                    ``++count;``                ``}`` ` `        ``return` `count;``    ``}`` ` `    ``// Driver method``    ``public` `static` `void` `main(String[] args) ``throws` `java.lang.Exception``    ``{``        ``int` `M[][] = ``new` `int``[][] { { ``1``, ``1``, ``0``, ``0``, ``0` `},``                                  ``{ ``0``, ``1``, ``0``, ``0``, ``1` `},``                                  ``{ ``1``, ``0``, ``0``, ``1``, ``1` `},``                                  ``{ ``0``, ``0``, ``0``, ``0``, ``0` `},``                                  ``{ ``1``, ``0``, ``1``, ``0``, ``1` `} };``        ``Islands I = ``new` `Islands();``        ``System.out.println(``"Number of islands is: "` `+ I.countIslands(M));``    ``}``} ``// Contributed by Aakash Hasija`

## Python

 `# Program to count islands in boolean 2D matrix``class` `Graph:`` ` `    ``def` `__init__(``self``, row, col, g):``        ``self``.ROW ``=` `row``        ``self``.COL ``=` `col``        ``self``.graph ``=` `g`` ` `    ``# A function to check if a given cell ``    ``# (row, col) can be included in DFS``    ``def` `isSafe(``self``, i, j, visited):``        ``# row number is in range, column number``        ``# is in range and value is 1 ``        ``# and not yet visited``        ``return` `(i >``=` `0` `and` `i < ``self``.ROW ``and` `                ``j >``=` `0` `and` `j < ``self``.COL ``and` `                ``not` `visited[i][j] ``and` `self``.graph[i][j])``             ` ` ` `    ``# A utility function to do DFS for a 2D ``    ``# boolean matrix. It only considers``    ``# the 8 neighbours as adjacent vertices``    ``def` `DFS(``self``, i, j, visited):`` ` `        ``# These arrays are used to get row and ``        ``# column numbers of 8 neighbours ``        ``# of a given cell``        ``rowNbr ``=` `[``-``1``, ``-``1``, ``-``1``,  ``0``, ``0``,  ``1``, ``1``, ``1``];``            ``colNbr ``=` `[``-``1``,  ``0``,  ``1``, ``-``1``, ``1``, ``-``1``, ``0``, ``1``];``         ` `        ``# Mark this cell as visited``        ``visited[i][j] ``=` `True`` ` `        ``# Recur for all connected neighbours``        ``for` `k ``in` `range``(``8``):``            ``if` `self``.isSafe(i ``+` `rowNbr[k], j ``+` `colNbr[k], visited):``                ``self``.DFS(i ``+` `rowNbr[k], j ``+` `colNbr[k], visited)`` ` ` ` `    ``# The main function that returns``    ``# count of islands in a given boolean``    ``# 2D matrix``    ``def` `countIslands(``self``):``        ``# Make a bool array to mark visited cells.``        ``# Initially all cells are unvisited``        ``visited ``=` `[[``False` `for` `j ``in` `range``(``self``.COL)]``for` `i ``in` `range``(``self``.ROW)]`` ` `        ``# Initialize count as 0 and traverse ``        ``# through the all cells of``        ``# given matrix``        ``count ``=` `0``        ``for` `i ``in` `range``(``self``.ROW):``            ``for` `j ``in` `range``(``self``.COL):``                ``# If a cell with value 1 is not visited yet, ``                ``# then new island found``                ``if` `visited[i][j] ``=``=` `False` `and` `self``.graph[i][j] ``=``=` `1``:``                    ``# Visit all cells in this island ``                    ``# and increment island count``                    ``self``.DFS(i, j, visited)``                    ``count ``+``=` `1`` ` `        ``return` `count`` ` ` ` `graph ``=` `[[``1``, ``1``, ``0``, ``0``, ``0``],``        ``[``0``, ``1``, ``0``, ``0``, ``1``],``        ``[``1``, ``0``, ``0``, ``1``, ``1``],``        ``[``0``, ``0``, ``0``, ``0``, ``0``],``        ``[``1``, ``0``, ``1``, ``0``, ``1``]]`` ` ` ` `row ``=` `len``(graph)``col ``=` `len``(graph[``0``])`` ` `g ``=` `Graph(row, col, graph)`` ` `print` `"Number of islands is:"``print` `g.countIslands()`` ` `# This code is contributed by Neelam Yadav`

## C#

 `// C# program to count``// islands in boolean``// 2D matrix``using` `System;`` ` `class` `GFG {``    ``// No of rows``    ``// and columns``    ``static` `int` `ROW = 5, COL = 5;`` ` `    ``// A function to check if``    ``// a given cell (row, col)``    ``// can be included in DFS``    ``static` `bool` `isSafe(``int``[, ] M, ``int` `row,``                       ``int` `col, ``bool``[, ] visited)``    ``{``        ``// row number is in range,``        ``// column number is in range``        ``// and value is 1 and not``        ``// yet visited``        ``return` `(row >= 0) && (row < ROW) && (col >= 0) && (col < COL) && (M[row, col] == 1 && !visited[row, col]);``    ``}`` ` `    ``// A utility function to do``    ``// DFS for a 2D boolean matrix.``    ``// It only considers the 8``    ``// neighbors as adjacent vertices``    ``static` `void` `DFS(``int``[, ] M, ``int` `row,``                    ``int` `col, ``bool``[, ] visited)``    ``{``        ``// These arrays are used to``        ``// get row and column numbers``        ``// of 8 neighbors of a given cell``        ``int``[] rowNbr = ``new` `int``[] { -1, -1, -1, 0,``                                   ``0, 1, 1, 1 };``        ``int``[] colNbr = ``new` `int``[] { -1, 0, 1, -1,``                                   ``1, -1, 0, 1 };`` ` `        ``// Mark this cell``        ``// as visited``        ``visited[row, col] = ``true``;`` ` `        ``// Recur for all``        ``// connected neighbours``        ``for` `(``int` `k = 0; k < 8; ++k)``            ``if` `(isSafe(M, row + rowNbr[k], col + colNbr[k], visited))``                ``DFS(M, row + rowNbr[k],``                    ``col + colNbr[k], visited);``    ``}`` ` `    ``// The main function that``    ``// returns count of islands``    ``// in a given boolean 2D matrix``    ``static` `int` `countIslands(``int``[, ] M)``    ``{``        ``// Make a bool array to``        ``// mark visited cells.``        ``// Initially all cells``        ``// are unvisited``        ``bool``[, ] visited = ``new` `bool``[ROW, COL];`` ` `        ``// Initialize count as 0 and``        ``// traverse through the all``        ``// cells of given matrix``        ``int` `count = 0;``        ``for` `(``int` `i = 0; i < ROW; ++i)``            ``for` `(``int` `j = 0; j < COL; ++j)``                ``if` `(M[i, j] == 1 && !visited[i, j]) {``                    ``// If a cell with value 1 is not``                    ``// visited yet, then new island``                    ``// found, Visit all cells in this``                    ``// island and increment island count``                    ``DFS(M, i, j, visited);``                    ``++count;``                ``}`` ` `        ``return` `count;``    ``}`` ` `    ``// Driver Code``    ``public` `static` `void` `Main()``    ``{``        ``int``[, ] M = ``new` `int``[, ] { { 1, 1, 0, 0, 0 },``                                  ``{ 0, 1, 0, 0, 1 },``                                  ``{ 1, 0, 0, 1, 1 },``                                  ``{ 0, 0, 0, 0, 0 },``                                  ``{ 1, 0, 1, 0, 1 } };``        ``Console.Write(``"Number of islands is: "` `+ countIslands(M));``    ``}``}`` ` `// This code is contributed``// by shiv_bhakt.`

## PHP

 `= 0) && (``\$row` `< ``\$ROW``) &&     ``           ``(``\$col` `>= 0) && (``\$col` `< ``\$COL``) &&     ``           ``(``\$M``[``\$row``][``\$col``] && ``             ``!isset(``\$visited``[``\$row``][``\$col``])); ``}`` ` `// A utility function to do DFS``// for a 2D boolean matrix. It ``// only considers the 8 neighbours``// as adjacent vertices``function` `DFS(&``\$M``, ``\$row``, ``\$col``,``            ``&``\$visited``)``{``    ``// These arrays are used to``    ``// get row and column numbers ``    ``// of 8 neighbours of a given cell``    ``\$rowNbr` `= ``array``(-1, -1, -1, 0, ``                    ``0, 1, 1, 1);``    ``\$colNbr` `= ``array``(-1, 0, 1, -1, ``                    ``1, -1, 0, 1);`` ` `    ``// Mark this cell as visited``    ``\$visited``[``\$row``][``\$col``] = true;`` ` `    ``// Recur for all ``    ``// connected neighbours``    ``for` `(``\$k` `= 0; ``\$k` `< 8; ++``\$k``)``        ``if` `(isSafe(``\$M``, ``\$row` `+ ``\$rowNbr``[``\$k``], ``                ``\$col` `+ ``\$colNbr``[``\$k``], ``\$visited``))``            ``DFS(``\$M``, ``\$row` `+ ``\$rowNbr``[``\$k``], ``                ``\$col` `+ ``\$colNbr``[``\$k``], ``\$visited``);``}`` ` `// The main function that returns``// count of islands in a given ``// boolean 2D matrix``function` `countIslands(&``\$M``)``{``    ``global` `\$ROW``, ``\$COL``;``     ` `    ``// Make a bool array to ``    ``// mark visited cells. ``    ``// Initially all cells ``    ``// are unvisited``    ``\$visited` `= ``array``(``array``());`` ` `    ``// Initialize count as 0 and``    ``// traverse through the all ``    ``// cells of given matrix``    ``\$count` `= 0;``    ``for` `(``\$i` `= 0; ``\$i` `< ``\$ROW``; ++``\$i``)``        ``for` `(``\$j` `= 0; ``\$j` `< ``\$COL``; ++``\$j``)``            ``if` `(``\$M``[``\$i``][``\$j``] && ``                 ``!isset(``\$visited``[``\$i``][``\$j``])) ``// If a cell with value 1``            ``{                               ``// is not visited yet, ``                ``DFS(``\$M``, ``\$i``, ``\$j``, ``\$visited``); ``// then new island found ``                ``++``\$count``;                   ``// Visit all cells in this ``            ``}                               ``// island and increment ``                                           ``// island count.`` ` `    ``return` `\$count``;``}`` ` `// Driver Code``\$M` `= ``array``(``array``(1, 1, 0, 0, 0),``           ``array``(0, 1, 0, 0, 1),``           ``array``(1, 0, 0, 1, 1),``            ``array``(0, 0, 0, 0, 0),``           ``array``(1, 0, 1, 0, 1));`` ` `echo` `"Number of islands is: "``,``            ``countIslands(``\$M``);`` ` `// This code is contributed ``// by ChitraNayal ``?>`

## Javascript

 ``
Output
`Number of islands is: 5`

Time complexity: O(ROW x COL)

Alternative solution without creating visited matrix:

## C++

 `// C++Program to count islands in boolean 2D matrix``#include ``using` `namespace` `std;`` ` `// A utility function to do DFS for a 2D``//  boolean matrix. It only considers``// the 8 neighbours as adjacent vertices``void` `DFS(vector> &M, ``int` `i, ``int` `j, ``int` `ROW,``         ``int` `COL)``{``    ``//Base condition``    ``//if i less than 0 or j less than 0 or i greater than ROW-1 or j greater than COL-  or if M[i][j] != 1 then we will simply return``    ``if` `(i < 0 || j < 0 || i > (ROW - 1) || j > (COL - 1) || M[i][j] != 1)``    ``{``        ``return``;``    ``}`` ` `    ``if` `(M[i][j] == 1)``    ``{``        ``M[i][j] = 0;``        ``DFS(M, i + 1, j, ROW, COL);     ``//right side traversal``        ``DFS(M, i - 1, j, ROW, COL);     ``//left side traversal``        ``DFS(M, i, j + 1, ROW, COL);     ``//upward side traversal``        ``DFS(M, i, j - 1, ROW, COL);     ``//downward side traversal``        ``DFS(M, i + 1, j + 1, ROW, COL); ``//upward-right side traversal``        ``DFS(M, i - 1, j - 1, ROW, COL); ``//downward-left side traversal``        ``DFS(M, i + 1, j - 1, ROW, COL); ``//downward-right side traversal``        ``DFS(M, i - 1, j + 1, ROW, COL); ``//upward-left side traversal``    ``}``}`` ` `int` `countIslands(vector> &M)``{``    ``int` `ROW = M.size();``    ``int` `COL = M[0].size();``    ``int` `count = 0;``    ``for` `(``int` `i = 0; i < ROW; i++)``    ``{``        ``for` `(``int` `j = 0; j < COL; j++)``        ``{``            ``if` `(M[i][j] == 1)``            ``{``                ``M[i][j] = 0;``                ``count++;``                ``DFS(M, i + 1, j, ROW, COL);     ``//right side traversal``                ``DFS(M, i - 1, j, ROW, COL);     ``//left side traversal``                ``DFS(M, i, j + 1, ROW, COL);     ``//upward side traversal``                ``DFS(M, i, j - 1, ROW, COL);     ``//downward side traversal``                ``DFS(M, i + 1, j + 1, ROW, COL); ``//upward-right side traversal``                ``DFS(M, i - 1, j - 1, ROW, COL); ``//downward-left side traversal``                ``DFS(M, i + 1, j - 1, ROW, COL); ``//downward-right side traversal``                ``DFS(M, i - 1, j + 1, ROW, COL); ``//upward-left side traversal``            ``}``        ``}``    ``}``    ``return` `count;``}`` ` `// Driver Code ``int` `main()``{``    ``vector> M = {{1, 1, 0, 0, 0},``                             ``{0, 1, 0, 0, 1},``                             ``{1, 0, 0, 1, 1},``                             ``{0, 0, 0, 0, 0},``                             ``{1, 0, 1, 0, 1}};`` ` `    ``cout << ``"Number of islands is: "` `<< countIslands(M);``    ``return` `0;``} `` ` `// This code is contributed by ajaymakvana.`

## Java

 `// Java Program to count islands in boolean 2D matrix``import` `java.util.*;``public` `class` `Main``{``    ``// A utility function to do DFS for a 2D``    ``//  boolean matrix. It only considers``    ``// the 8 neighbours as adjacent vertices``    ``static` `void` `DFS(``int``[][] M, ``int` `i, ``int` `j, ``int` `ROW, ``int` `COL)``    ``{``        ` `        ``// Base condition``        ``// if i less than 0 or j less than 0 or i greater than ROW-1 or j greater than COL-  or if M[i][j] != 1 then we will simply return``        ``if` `(i < ``0` `|| j < ``0` `|| i > (ROW - ``1``) || j > (COL - ``1``) || M[i][j] != ``1``)``        ``{``            ``return``;``        ``}``   ` `        ``if` `(M[i][j] == ``1``)``        ``{``            ``M[i][j] = ``0``;``            ``DFS(M, i + ``1``, j, ROW, COL);     ``//right side traversal``            ``DFS(M, i - ``1``, j, ROW, COL);     ``//left side traversal``            ``DFS(M, i, j + ``1``, ROW, COL);     ``//upward side traversal``            ``DFS(M, i, j - ``1``, ROW, COL);     ``//downward side traversal``            ``DFS(M, i + ``1``, j + ``1``, ROW, COL); ``//upward-right side traversal``            ``DFS(M, i - ``1``, j - ``1``, ROW, COL); ``//downward-left side traversal``            ``DFS(M, i + ``1``, j - ``1``, ROW, COL); ``//downward-right side traversal``            ``DFS(M, i - ``1``, j + ``1``, ROW, COL); ``//upward-left side traversal``        ``}``    ``}``   ` `    ``static` `int` `countIslands(``int``[][] M)``    ``{``        ``int` `ROW = M.length;``        ``int` `COL = M[``0``].length;``        ``int` `count = ``0``;``        ``for` `(``int` `i = ``0``; i < ROW; i++)``        ``{``            ``for` `(``int` `j = ``0``; j < COL; j++)``            ``{``                ``if` `(M[i][j] == ``1``)``                ``{``                    ``M[i][j] = ``0``;``                    ``count++;``                    ``DFS(M, i + ``1``, j, ROW, COL);     ``//right side traversal``                    ``DFS(M, i - ``1``, j, ROW, COL);     ``//left side traversal``                    ``DFS(M, i, j + ``1``, ROW, COL);     ``//upward side traversal``                    ``DFS(M, i, j - ``1``, ROW, COL);     ``//downward side traversal``                    ``DFS(M, i + ``1``, j + ``1``, ROW, COL); ``//upward-right side traversal``                    ``DFS(M, i - ``1``, j - ``1``, ROW, COL); ``//downward-left side traversal``                    ``DFS(M, i + ``1``, j - ``1``, ROW, COL); ``//downward-right side traversal``                    ``DFS(M, i - ``1``, j + ``1``, ROW, COL); ``//upward-left side traversal``                ``}``            ``}``        ``}``        ``return` `count;``    ``}``    ` `  ``// Driver code``    ``public` `static` `void` `main(String[] args) {``        ``int``[][] M = {{``1``, ``1``, ``0``, ``0``, ``0``},``                 ``{``0``, ``1``, ``0``, ``0``, ``1``},``                 ``{``1``, ``0``, ``0``, ``1``, ``1``},``                 ``{``0``, ``0``, ``0``, ``0``, ``0``},``                 ``{``1``, ``0``, ``1``, ``0``, ``1``}};``   ` `        ``System.out.print(``"Number of islands is: "` `+ countIslands(M));``    ``}``}`` ` `// This code is contributed by suresh07.`

## Python3

 `# Program to count islands in boolean 2D matrix``class` `Graph:`` ` `    ``def` `__init__(``self``, row, col, graph):``        ``self``.ROW ``=` `row``        ``self``.COL ``=` `col``        ``self``.graph ``=` `graph`` ` `    ``# A utility function to do DFS for a 2D``    ``# boolean matrix. It only considers``    ``# the 8 neighbours as adjacent vertices``    ``def` `DFS(``self``, i, j):``        ``if` `i < ``0` `or` `i >``=` `len``(``self``.graph) ``or` `j < ``0` `or` `j >``=` `len``(``self``.graph[``0``]) ``or` `self``.graph[i][j] !``=` `1``:``            ``return`` ` `        ``# mark it as visited``        ``self``.graph[i][j] ``=` `-``1`` ` `        ``# Recur for 8 neighbours``        ``self``.DFS(i ``-` `1``, j ``-` `1``)``        ``self``.DFS(i ``-` `1``, j)``        ``self``.DFS(i ``-` `1``, j ``+` `1``)``        ``self``.DFS(i, j ``-` `1``)``        ``self``.DFS(i, j ``+` `1``)``        ``self``.DFS(i ``+` `1``, j ``-` `1``)``        ``self``.DFS(i ``+` `1``, j)``        ``self``.DFS(i ``+` `1``, j ``+` `1``)`` ` `    ``# The main function that returns``    ``# count of islands in a given boolean``    ``# 2D matrix``    ``def` `countIslands(``self``):``        ``# Initialize count as 0 and traverse``        ``# through the all cells of``        ``# given matrix``        ``count ``=` `0``        ``for` `i ``in` `range``(``self``.ROW):``            ``for` `j ``in` `range``(``self``.COL):``                ``# If a cell with value 1 is not visited yet,``                ``# then new island found``                ``if` `self``.graph[i][j] ``=``=` `1``:``                    ``# Visit all cells in this island``                    ``# and increment island count``                    ``self``.DFS(i, j)``                    ``count ``+``=` `1`` ` `        ``return` `count`` ` ` ` `graph ``=` `[``    ``[``1``, ``1``, ``0``, ``0``, ``0``],``    ``[``0``, ``1``, ``0``, ``0``, ``1``],``    ``[``1``, ``0``, ``0``, ``1``, ``1``],``    ``[``0``, ``0``, ``0``, ``0``, ``0``],``    ``[``1``, ``0``, ``1``, ``0``, ``1``]``]`` ` ` ` `row ``=` `len``(graph)``col ``=` `len``(graph[``0``])`` ` `g ``=` `Graph(row, col, graph)`` ` `print``(``"Number of islands is:"``, g.countIslands())`` ` `# This code is contributed by Shivam Shrey`

## C#

 `// C# Program to count islands in boolean 2D matrix``using` `System;``using` `System.Collections.Generic;``class` `GFG {``     ` `    ``// A utility function to do DFS for a 2D``    ``//  boolean matrix. It only considers``    ``// the 8 neighbours as adjacent vertices``    ``static` `void` `DFS(``int``[,] M, ``int` `i, ``int` `j, ``int` `ROW, ``int` `COL)``    ``{``       ` `        ``// Base condition``        ``// if i less than 0 or j less than 0 or i greater than ROW-1 or j greater than COL-  or if M[i][j] != 1 then we will simply return``        ``if` `(i < 0 || j < 0 || i > (ROW - 1) || j > (COL - 1) || M[i,j] != 1)``        ``{``            ``return``;``        ``}``  ` `        ``if` `(M[i,j] == 1)``        ``{``            ``M[i,j] = 0;``            ``DFS(M, i + 1, j, ROW, COL);     ``//right side traversal``            ``DFS(M, i - 1, j, ROW, COL);     ``//left side traversal``            ``DFS(M, i, j + 1, ROW, COL);     ``//upward side traversal``            ``DFS(M, i, j - 1, ROW, COL);     ``//downward side traversal``            ``DFS(M, i + 1, j + 1, ROW, COL); ``//upward-right side traversal``            ``DFS(M, i - 1, j - 1, ROW, COL); ``//downward-left side traversal``            ``DFS(M, i + 1, j - 1, ROW, COL); ``//downward-right side traversal``            ``DFS(M, i - 1, j + 1, ROW, COL); ``//upward-left side traversal``        ``}``    ``}``  ` `    ``static` `int` `countIslands(``int``[,] M)``    ``{``        ``int` `ROW = M.GetLength(0);``        ``int` `COL = M.GetLength(1);``        ``int` `count = 0;``        ``for` `(``int` `i = 0; i < ROW; i++)``        ``{``            ``for` `(``int` `j = 0; j < COL; j++)``            ``{``                ``if` `(M[i,j] == 1)``                ``{``                    ``M[i,j] = 0;``                    ``count++;``                    ``DFS(M, i + 1, j, ROW, COL);     ``//right side traversal``                    ``DFS(M, i - 1, j, ROW, COL);     ``//left side traversal``                    ``DFS(M, i, j + 1, ROW, COL);     ``//upward side traversal``                    ``DFS(M, i, j - 1, ROW, COL);     ``//downward side traversal``                    ``DFS(M, i + 1, j + 1, ROW, COL); ``//upward-right side traversal``                    ``DFS(M, i - 1, j - 1, ROW, COL); ``//downward-left side traversal``                    ``DFS(M, i + 1, j - 1, ROW, COL); ``//downward-right side traversal``                    ``DFS(M, i - 1, j + 1, ROW, COL); ``//upward-left side traversal``                ``}``            ``}``        ``}``        ``return` `count;``    ``}``   ` `  ``// Driver code``  ``static` `void` `Main() {``    ``int``[,] M = {{1, 1, 0, 0, 0},``                 ``{0, 1, 0, 0, 1},``                 ``{1, 0, 0, 1, 1},``                 ``{0, 0, 0, 0, 0},``                 ``{1, 0, 1, 0, 1}};``  ` `    ``Console.Write(``"Number of islands is: "` `+ countIslands(M));``  ``}``}`` ` `// This code is contributed by decode2207.`

## Javascript

 ``
Output
`Number of islands is: 5`

Time complexity: O(ROW x COL)

Find the number of Islands | Set 2 (Using Disjoint Set)
Islands in a graph using BFS
Reference:
http://en.wikipedia.org/wiki/Connected_component_%28graph_theory%29