Find n-th term of series 1, 3, 6, 10, 15, 21…
Given a number n, find the n-th term in the series 1, 3, 6, 10, 15, 21…
Examples:
Input : 3 Output : 6 Input : 4 Output : 10
The given series represent triangular numbers which are sums of natural numbers.
Naive approach :
The series basically represents sums of natural numbers. First term is sum of single number. Second term is sum of two numbers, and so on. A simple solution is to add the first n natural numbers.
C++
// CPP program to find n-th term of // series 1, 3, 6, 10, 15, 21... #include <iostream> using namespace std; // Function to find the nth term of series int term( int n) { // Loop to add numbers int ans = 0; for ( int i = 1; i <= n; i++) ans += i; return ans; } // Driver code int main() { int n = 4; cout << term(n) ; return 0; } |
Java
// Java program to find n-th term of // series 1, 3, 6, 10, 15, 21... import java.io.*; class GFG { // Function to find the nth term of series static int term( int n) { // Loop to add numbers int ans = 0 ; for ( int i = 1 ; i <= n; i++) ans += i; return ans; } // Driver code public static void main(String args[]) { int n = 4 ; System.out.println(term(n)); } } // This code is contributed by Nikita Tiwari. |
Python3
# Python 3 program to find # n-th term of # series 1, 3, 6, 10, 15, 21... # Function to find the # nth term of series def term(n) : # Loop to add numbers ans = 0 for i in range ( 1 ,n + 1 ) : ans = ans + i return ans # Driver code n = 4 print (term(n)) # This code is contributed # by Nikita Tiwari. |
C#
// C# program to find n-th term of // series 1, 3, 6, 10, 15, 21... using System; class GFG { // Function to find the nth term // of series static int term( int n) { // Loop to add numbers int ans = 0; for ( int i = 1; i <= n; i++) ans += i; return ans; } // Driver code public static void Main() { int n = 4; Console.WriteLine(term(n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find n-th term of // series 1, 3, 6, 10, 15, 21... // Function to find the nth // term of series function term( $n ) { // Loop to add numbers $ans = 0; for ( $i = 1; $i <= $n ; $i ++) $ans += $i ; return $ans ; } // Driver code $n = 4; echo (term( $n )) ; // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find n-th term of // series 1, 3, 6, 10, 15, 21... // Function to find the nth term of series function term(n) { // Loop to add numbers let ans = 0; for (let i = 1; i <= n; i++) ans += i; return ans; } // Driver code let n = 4; document.write(term(n)); // This code is contributed by rishavmahato348 </script> |
Output:
10
Time Complexity: O(N), as we are using a loop to traverse N times.
Auxiliary Space: O(1), as we are not using any extra space.
Efficient approach :
The pattern in this series is nth term is equal to sum of (n-1)th term and n.
Example :
n = 2 2nd term equals to sum of 1st term and 2 i.e A2 = A1 + 2 = 1 + 2 = 3 Similarly, A3 = A2 + 3 = 3 + 3 = 6 and so on..
We get:
A(n) = A(n - 1) + n = A(n - 2) + n + (n - 1) = A(n - 3) + n + (n - 1) + (n - 2) . . . = A(1) + 2 + 3... + (n-1) + n A(n) = 1 + 2 + 3 + 4... + (n - 1) + n = n(n + 1) / 2 i.e A(n) is sum of First n natural numbers.
Below is the implementation of the above approach:
C++
// CPP program to find the n-th // term in series 1 3 6 10 ... #include <bits/stdc++.h> using namespace std; // Function to find nth term int term( int n) { return n * (n + 1) / 2; } // Driver code int main() { int n = 4; cout << term(n); return 0; } |
Java
// Java program to find the n-th // term in series 1 3 6 10 ... import java.io.*; class Series { // Function to find nth term static int term( int n){ return n * (n + 1 ) / 2 ; } // Driver Code public static void main (String[] args) { int n = 4 ; System.out.println(term(n)); } } // This code is contributed by Chinmoy Lenka |
Python
# Python program to find the Nth # term in series 1 3 6 10 ... # Function to print nth term # of series 1 3 6 10 .... def term(n): return n * (n + 1 ) / 2 # Driver code n = 4 print term(n) |
C#
// C# program to find the n-th // term in series 1 3 6 10 ... using System; class GFG { // Function to find nth term static int term( int n) { return n * (n + 1) / 2; } // Driver Code public static void Main() { int n = 4; Console.WriteLine(term(n)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find the n-th // term in series 1 3 6 10 ... // Function to find nth term function term( $n ) { return $n * ( $n + 1) / 2; } // Driver code $n = 4; echo (term( $n )); // This code is contributed by Ajit. ?> |
Javascript
<script> // Javascript program to find the n-th // term in series 1 3 6 10 ... // Function to find nth term function term(n) { return parseInt(n * (n + 1) / 2); } // Driver code let n = 4; document.write(term(n)); // This code is contributed by subhammahato348. </script> |
Output :
10
Time Complexity: O(1), as we are not using any loop or recursion to traverse.
Auxiliary Space: O(1), as we are not using any extra space.
Please Login to comment...