Find Nth term of the series where each term differs by 6 and 2 alternately
Given a number N, the task is to find the Nth term of the series where each term differs by 6 and 2 alternately.
Examples:
Input: N = 6
Output: 24
Explanation:
The Nth term is 0 + 6 + 2 + 6 + 2 + 6 + 2 = 24
Input: N = 3
Output: 14
Explanation:
The Nth term is 0 + 6 + 2 + 6 = 14
Naive Approach: The idea is to iterate from 1 with an increment of 6 and 2 alternatively, till we reach the Nth term.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find Nth term void findNthTerm( int N) { int ans = 0; // Iterate from 1 till Nth term for ( int i = 0; i < N; i++) { // Check if i is even and // then add 6 if (i % 2 == 0) { ans = ans + 6; } // Else add 2 else { ans = ans + 2; } } // Print ans cout << ans << endl; } // Driver Code int main() { int N = 3; findNthTerm(N); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to find Nth term static void findNthTerm( int N) { int ans = 0 ; // Iterate from 1 till Nth term for ( int i = 0 ; i < N; i++) { // Check if i is even and // then add 6 if (i % 2 == 0 ) { ans = ans + 6 ; } // Else add 2 else { ans = ans + 2 ; } } // Print ans System.out.print(ans + "\n" ); } // Driver Code public static void main(String[] args) { int N = 3 ; findNthTerm(N); } } // This code is contributed by PrinciRaj1992 |
Python3
# Python3 program for the above approach # Function to find Nth term def findNthTerm(N): ans = 0 # Iterate from 1 till Nth term for i in range (N): # Check if i is even and # then add 6 if (i % 2 = = 0 ) : ans = ans + 6 # Else add 2 else : ans = ans + 2 # Print ans print (ans) # Driver Code if __name__ = = '__main__' : N = 3 findNthTerm(N) # This code is contributed by AbhiThakur |
C#
// C# program for the above approach using System; class GFG{ // Function to find Nth term static void findNthTerm( int N) { int ans = 0; // Iterate from 1 till Nth term for ( int i = 0; i < N; i++) { // Check if i is even and // then add 6 if (i % 2 == 0) { ans = ans + 6; } // Else add 2 else { ans = ans + 2; } } // Print ans Console.Write(ans + "\n" ); } // Driver Code public static void Main() { int N = 3; findNthTerm(N); } } // This code is contributed by AbhiThakur |
Javascript
<script> // JavaScript program for the above approach // Function to find Nth term function findNthTerm(N) { let ans = 0; // Iterate from 1 till Nth term for (let i = 0; i < N; i++) { // Check if i is even and // then add 6 if (i % 2 == 0) { ans = ans + 6; } // Else add 2 else { ans = ans + 2; } } // Print ans document.write(ans + "<br>" ); } // Driver Code let N = 3; findNthTerm(N); // This code is contributed by Mayank Tyagi </script> |
Output:
14
Time Complexity: O(N)
Auxiliary Space: O(1) as using constant variables
Efficient Approach: We can find the Nth term by using the below formula:
- If N is Odd: The Nth term is given by (N/2 + 1)*6 + (N/2)*2.
- If N is Even: The Nth term is given by (N/2)*6 + (N/2)*2.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find Nth term void findNthTerm( int N) { int ans; // Check if N is even if (N % 2 == 0) { // Formula for n is even ans = (N / 2) * 6 + (N / 2) * 2; } // Check if N is odd else { // Formula for N is odd ans = (N / 2 + 1) * 6 + (N / 2) * 2; } // Print ans cout << ans << endl; } // Driver Code int main() { int N = 3; findNthTerm(N); return 0; } |
Java
// Java program for the above approach class GFG{ // Function to find Nth term static void findNthTerm( int N) { int ans; // Check if N is even if (N % 2 == 0 ) { // Formula for n is even ans = (N / 2 ) * 6 + (N / 2 ) * 2 ; } // Check if N is odd else { // Formula for N is odd ans = (N / 2 + 1 ) * 6 + (N / 2 ) * 2 ; } // Print ans System.out.print(ans + "\n" ); } // Driver Code public static void main(String[] args) { int N = 3 ; findNthTerm(N); } } // This code contributed by PrinciRaj1992 |
Python3
# Python3 program for the above approach # Function to find Nth term def findNthTerm(N): ans = 0 ; # Check if N is even if (N % 2 = = 0 ): # Formula for n is even ans = (N / / 2 ) * 6 + (N / / 2 ) * 2 ; # Check if N is odd else : # Formula for N is odd ans = (N / / 2 + 1 ) * 6 + (N / / 2 ) * 2 ; # Print ans print (ans); # Driver Code if __name__ = = '__main__' : N = 3 ; findNthTerm(N); # This code is contributed by Rajput-Ji |
C#
// C# program for the above approach using System; class GFG{ // Function to find Nth term static void findNthTerm( int N) { int ans; // Check if N is even if (N % 2 == 0) { // Formula for n is even ans = (N / 2) * 6 + (N / 2) * 2; } // Check if N is odd else { // Formula for N is odd ans = (N / 2 + 1) * 6 + (N / 2) * 2; } // Print ans Console.Write(ans + "\n" ); } // Driver Code public static void Main(String[] args) { int N = 3; findNthTerm(N); } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // JavaScript program for the above approach // Function to find Nth term function findNthTerm( N) { let ans; // Check if N is even if (N % 2 == 0) { // Formula for n is even ans = parseInt(N / 2) * 6 + parseInt(N / 2) * 2; } // Check if N is odd else { // Formula for N is odd ans = parseInt(N / 2 + 1) * 6 + parseInt(N / 2) * 2; } // Print ans document.write(ans); } // Driver Function // get the value of N let N = 3; // Calculate and print the Nth term findNthTerm(N); // This code is contributed by todaysgaurav </script> |
Output:
14
Time Complexity: O(1)
Auxiliary Space: O(1) since using constant variables
Please Login to comment...