Skip to content
Related Articles

Related Articles

Improve Article
Find Nth term of series 1, 4, 15, 72, 420…
  • Difficulty Level : Easy
  • Last Updated : 14 May, 2021

Given a number N. The task is to write a program to find the Nth term in the below series: 

1, 4, 15, 72, 420…

Examples:  

Input: 3
Output: 15
For N = 3, we know that the factorial of 3 is 6
Nth term = 6*(3+2)/2
         = 15

Input: 6
Output: 2880
For N = 6, we know that the factorial of 6 is 720
Nth term = 620*(6+2)/2
         = 2880

The idea is to first find the factorial of the given number N, that is N!. Now the N-th term in the above series will be:

N-th term = N! * (N + 2)/2



Below is the implementation of the above approach: 

C++




// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
#include <iostream>
using namespace std;
 
// Function to find factorial of N
int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}

Java




// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}
 
// This code is contributed by Subhadeep

Python3




# Python 3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
 
# Function for finding
# factorial of N
def factorial(N) :
    fact = 1
    for i in range(1, N + 1) :
        fact = fact * i
 
    # return factorial of N
    return fact
 
# Function for calculating
# Nth term of series
def nthTerm(N) :
 
    # return nth term
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
if __name__ == "__main__" :
     
    N = 6
 
    # Function Calling
    print(nthTerm(N))
 
# This code is contributed
# by ANKITRAI1

C#




// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    int fact = 1;
 
    for (int i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N    
    return fact;
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal

PHP




<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function for finding
// factorial of N
function factorial($N)
{
    $fact = 1;
    for($i = 1; $i <= $N; $i++)
        $fact = $fact * $i;
 
    // return factorial of N
    return $fact;
}
 
// Function for calculating
// Nth term of series
function nthTerm($N)
{
 
    // return nth term
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver code
$N = 6;
 
// Function Calling
echo nthTerm($N);
 
// This code is contributed
// by mits
?>

Javascript




<script>
 
// JavaScript program to find N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial of N
function factorial( N)
{
    let fact = 1;
 
    for (let i = 1; i <= N; i++)
        fact = fact * i;
         
    // return factorial of N        
    return fact;
}
 
// calculate Nth term of series
function nthTerm(N)
{
    return (factorial(N) * (N + 2) / 2);
}
// Driver code
 
    let N = 6;
   document.write( nthTerm(N) );
 
// This code contributed by aashish1995
 
</script>
Output: 
2880

 

Another approach :(Using recursion) 

C++




// CPP program to find N-th term of the series:
// 1, 4, 15, 72, 420…
// Using recursion
#include <iostream>
using namespace std;
 
// Function to find factorial of N
// with recursion
int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Function
int main()
{
    int N = 6;
     
    cout << nthTerm(N);
     
    return 0;
}

Java




// Java program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void main(String args[])
{
    int N = 6;
     
    System.out.println(nthTerm(N));
}
}

Python3




# Python3 program to find
# N-th term of the series:
# 1, 4, 15, 72, 420…
# Using recursion
 
# Function to find factorial
# of N with recursion
def factorial(N):
 
    # base condition
    if N == 0 or N == 1:
        return 1
 
    # use recursion
    return N * factorial(N - 1)
 
def nthTerm(N):
     
    # calculate Nth term of series
    return (factorial(N) * (N + 2) // 2)
 
# Driver code
N = 6
print(nthTerm(N))
 
# This code is contributed
# by Shrikant13

C#




// C# program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
using System;
 
class GFG
{
     
// Function to find factorial of N
static int factorial(int N)
{
    // base condition
    if( N == 0 || N == 1 )
        return 1;
    // use recursion
    return N * factorial( N - 1 );
}
 
// calculate Nth term of series
static int nthTerm(int N)
{
    return (factorial(N) * (N + 2) / 2);
}
 
// Driver Code
public static void Main()
{
    int N = 6;
     
    Console.Write(nthTerm(N));
}
}
 
// This code is contributed by ChitraNayal

PHP




<?php
// PHP program to find
// N-th term of the series:
// 1, 4, 15, 72, 420…
 
// Function to find factorial
// of N with recursion
function factorial($N)
{
    // base condition
    if($N == 0 or $N == 1)
        return 1;
         
    // use recursion
    return $N * factorial($N - 1);
}
 
// calculate Nth term of series
function nthTerm($N)
{
    return (factorial($N) *
           ($N + 2) / 2);
}
 
// Driver Code
$N = 6;
 
echo nthTerm($N);
 
// This code is contributed
// by Shashank
?>

Javascript




<script>
 
// Javascript program to find N-th
// term of the series:
// 1, 4, 15, 72, 420
 
// Function to find factorial of N
function factorial(N)
{
     
    // Base condition
    if (N == 0 || N == 1)
        return 1;
         
    // Use recursion
    return N * factorial(N - 1);
}
 
// Calculate Nth term of series
function nthTerm(N)
{
    return(factorial(N) * (N + 2) / 2);
}
 
// Driver Code
let N = 6;
 
document.write(nthTerm(N));
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
2880

 

Time complexity: O(N)
Note: Above code wouldn’t not work for large values of N. To find the values for large N, use the concept of Factorial for large numbers.
 

Want to learn from the best curated videos and practice problems, check out the C++ Foundation Course for Basic to Advanced C++ and C++ STL Course for foundation plus STL.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.



My Personal Notes arrow_drop_up
Recommended Articles
Page :