Skip to content
Related Articles
Find Nth term of series 1, 4, 15, 72, 420…
• Difficulty Level : Easy
• Last Updated : 14 May, 2021

Given a number N. The task is to write a program to find the Nth term in the below series:

1, 4, 15, 72, 420…

Examples:

```Input: 3
Output: 15
For N = 3, we know that the factorial of 3 is 6
Nth term = 6*(3+2)/2
= 15

Input: 6
Output: 2880
For N = 6, we know that the factorial of 6 is 720
Nth term = 620*(6+2)/2
= 2880```

The idea is to first find the factorial of the given number N, that is N!. Now the N-th term in the above series will be:

N-th term = N! * (N + 2)/2

Below is the implementation of the above approach:

## C++

 `// CPP program to find N-th term of the series:``// 1, 4, 15, 72, 420…``#include ``using` `namespace` `std;` `// Function to find factorial of N``int` `factorial(``int` `N)``{``    ``int` `fact = 1;` `    ``for` `(``int` `i = 1; i <= N; i++)``        ``fact = fact * i;``        ` `    ``// return factorial of N        ``    ``return` `fact;``}` `// calculate Nth term of series``int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + 2) / 2);``}` `// Driver Function``int` `main()``{``    ``int` `N = 6;``    ` `    ``cout << nthTerm(N);``    ` `    ``return` `0;``}`

## Java

 `// Java program to find N-th``// term of the series:``// 1, 4, 15, 72, 420``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;` `class` `GFG``{``    ` `// Function to find factorial of N``static` `int` `factorial(``int` `N)``{``    ``int` `fact = ``1``;` `    ``for` `(``int` `i = ``1``; i <= N; i++)``        ``fact = fact * i;``        ` `    ``// return factorial of N    ``    ``return` `fact;``}` `// calculate Nth term of series``static` `int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + ``2``) / ``2``);``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `N = ``6``;``    ` `    ``System.out.println(nthTerm(N));``}``}` `// This code is contributed by Subhadeep`

## Python3

 `# Python 3 program to find``# N-th term of the series:``# 1, 4, 15, 72, 420…` `# Function for finding``# factorial of N``def` `factorial(N) :``    ``fact ``=` `1``    ``for` `i ``in` `range``(``1``, N ``+` `1``) :``        ``fact ``=` `fact ``*` `i` `    ``# return factorial of N``    ``return` `fact` `# Function for calculating``# Nth term of series``def` `nthTerm(N) :` `    ``# return nth term``    ``return` `(factorial(N) ``*` `(N ``+` `2``) ``/``/` `2``)` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:``    ` `    ``N ``=` `6` `    ``# Function Calling``    ``print``(nthTerm(N))` `# This code is contributed``# by ANKITRAI1`

## C#

 `// C# program to find N-th``// term of the series:``// 1, 4, 15, 72, 420``using` `System;` `class` `GFG``{``    ` `// Function to find factorial of N``static` `int` `factorial(``int` `N)``{``    ``int` `fact = 1;` `    ``for` `(``int` `i = 1; i <= N; i++)``        ``fact = fact * i;``        ` `    ``// return factorial of N    ``    ``return` `fact;``}` `// calculate Nth term of series``static` `int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + 2) / 2);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `N = 6;``    ` `    ``Console.Write(nthTerm(N));``}``}` `// This code is contributed by ChitraNayal`

## PHP

 ``

## Javascript

 ``
Output:
`2880`

Another approach :(Using recursion)

## C++

 `// CPP program to find N-th term of the series:``// 1, 4, 15, 72, 420…``// Using recursion``#include ``using` `namespace` `std;` `// Function to find factorial of N``// with recursion``int` `factorial(``int` `N)``{``    ``// base condition``    ``if``( N == 0 || N == 1 )``        ``return` `1;``    ``// use recursion``    ``return` `N * factorial( N - 1 );``}` `// calculate Nth term of series``int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + 2) / 2);``}` `// Driver Function``int` `main()``{``    ``int` `N = 6;``    ` `    ``cout << nthTerm(N);``    ` `    ``return` `0;``}`

## Java

 `// Java program to find N-th``// term of the series:``// 1, 4, 15, 72, 420``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;` `class` `GFG``{``    ` `// Function to find factorial of N``static` `int` `factorial(``int` `N)``{``    ``// base condition``    ``if``( N == ``0` `|| N == ``1` `)``        ``return` `1``;``    ``// use recursion``    ``return` `N * factorial( N - ``1` `);``}` `// calculate Nth term of series``static` `int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + ``2``) / ``2``);``}` `// Driver Code``public` `static` `void` `main(String args[])``{``    ``int` `N = ``6``;``    ` `    ``System.out.println(nthTerm(N));``}``}`

## Python3

 `# Python3 program to find``# N-th term of the series:``# 1, 4, 15, 72, 420…``# Using recursion` `# Function to find factorial``# of N with recursion``def` `factorial(N):` `    ``# base condition``    ``if` `N ``=``=` `0` `or` `N ``=``=` `1``:``        ``return` `1` `    ``# use recursion``    ``return` `N ``*` `factorial(N ``-` `1``)` `def` `nthTerm(N):``    ` `    ``# calculate Nth term of series``    ``return` `(factorial(N) ``*` `(N ``+` `2``) ``/``/` `2``)` `# Driver code``N ``=` `6``print``(nthTerm(N))` `# This code is contributed``# by Shrikant13`

## C#

 `// C# program to find N-th``// term of the series:``// 1, 4, 15, 72, 420``using` `System;` `class` `GFG``{``    ` `// Function to find factorial of N``static` `int` `factorial(``int` `N)``{``    ``// base condition``    ``if``( N == 0 || N == 1 )``        ``return` `1;``    ``// use recursion``    ``return` `N * factorial( N - 1 );``}` `// calculate Nth term of series``static` `int` `nthTerm(``int` `N)``{``    ``return` `(factorial(N) * (N + 2) / 2);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``int` `N = 6;``    ` `    ``Console.Write(nthTerm(N));``}``}` `// This code is contributed by ChitraNayal`

## PHP

 ``

## Javascript

 ``
Output:
`2880`

Time complexity: O(N)
Note: Above code wouldn’t not work for large values of N. To find the values for large N, use the concept of Factorial for large numbers.

Want to learn from the best curated videos and practice problems, check out the C++ Foundation Course for Basic to Advanced C++ and C++ STL Course for foundation plus STL.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up