Find Nth number in a sequence which is not a multiple of a given number

Given four integers A, N, L and R, the task is to find the N th number in a sequence of consecutive integers from L to R which is not a multiple of A. It is given that the sequence contain at least N numbers which are not divisible by A and the integer A is always greater than 1.
Examples: 
 

Input: A = 2, N = 3, L = 1, R = 10 
Output:
Explanation: 
The sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Here 5 is the third number which is not a multiple of 2 in the sequence.
Input: A = 3, N = 6, L = 4, R = 20 
Output: 11 
Explanation : 
11 is the 6th number which is not a multiple of 3 in the sequence. 
 

 

Naive Approach: The naive approach is to iterate over the range [L, R] in a loop to find the Nth number. The steps are: 
 

  1. Intialize the count of non-multiple number and current number to 0.
  2. Iterate over the range [L, R] until the count of the non-multiple number is not equal to N.
  3. Increment the count of the non-multiple number by 1, If the current number is not divisible by A.

Below is the implementation of the above approach: 
 



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find Nth number not a
// multiple of A in the range [L, R]
void count_no (int A, int N, int L, int R)
{
     
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
    if (i % A != 0)
        count += 1;
         
    if (count == N)
        break;
    }
    cout << i;
}
 
// Driver code
int main()
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
     
    // Function Call
    count_no (A, N, L, R);
    return 0;
}
 
// This code is contributed by mohit kumar 29
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
import java.io.*;
 
class GFG{
     
// Function to find Nth number not a
// multiple of A in the range [L, R]
static void count_no (int A, int N,
                      int L, int R)
{
 
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
        if (i % A != 0)
            count += 1;
     
        if (count == N)
            break;
    }
    System.out.println(i);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
 
    // Function call
    count_no (A, N, L, R);
}
}
 
// This code is contributed by sanjoy_62
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to find Nth number not a
# multiple of A in the range [L, R]
def count_no (A, N, L, R):
 
    # To store the count
    count = 0
 
    # To check all the nos in range
    for i in range ( L, R + 1 ):
        if ( i % A != 0 ):
            count += 1
 
        if ( count == N ):
            break
    print ( i )
     
# Given values of A, N, L, R
A, N, L, R = 3, 6, 4, 20
 
# Function Call
count_no (A, N, L, R)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
     
// Function to find Nth number not a
// multiple of A in the range [L, R]
static void count_no (int A, int N,
                      int L, int R)
{
     
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
        if (i % A != 0)
            count += 1;
     
        if (count == N)
            break;
    }
    Console.WriteLine(i);
}
 
// Driver code
public static void Main()
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
 
    // Function call
    count_no (A, N, L, R);
}
}
 
// This code is contributed by sanjoy_62
chevron_right

Output: 
11



 

Time Complexity: O(R – L) 
Auxiliary Space: O(1) 
 

Efficient Approach: 
The key observation is that there are A – 1 numbers that are not divisible by A in the range [1, A – 1]. Similarly, there are A – 1 numbers not divisible by A in range [A + 1, 2 * A – 1], [2 * A + 1, 3 * A – 1] and so on. 
With the help of this observation, the Nth number which is not divisible by A will be: 
 

To find the value in the range [ L, R ], we need to shift the origin from ‘0’ to ‘L – 1’, thus we can say that the Nth number which is not divisible by A in the range will be : 
 

However there is an edge case, when the value of ( L – 1 ) + N + floor( ( N – 1 ) / ( A – 1 ) ) itself turns out to be multiple of a ‘A’, in that case Nth number will be : 
 

Below is the implementation of the above approach:
 

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
import math
 
# Function to find Nth number
# not a multiple of A in range [L, R]
def countNo (A, N, L, R):
 
    # Calculate the Nth no
    ans = L - 1 + N \
          + math.floor( ( N - 1 ) / ( A - 1 ) )
     
    # Check for the edge case
    if ans % A == 0:
        ans = ans + 1;
    print(ans)
 
# Input parameters
A, N, L, R = 5, 10, 4, 20
 
# Function Call
countNo(A, N, L, R)
chevron_right

Output: 
16



 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 





Never give up

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :