Find Nth number in a sequence which is not a multiple of a given number

Given four integers A, N, L and R, the task is to find the N th number in a sequence of consecutive integers from L to R which is not a multiple of A. It is given that the sequence contain at least N numbers which are not divisible by A and the integer A is always greater than 1.
Examples: 
 

Input: A = 2, N = 3, L = 1, R = 10 
Output:
Explanation: 
The sequence is 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Here 5 is the third number which is not a multiple of 2 in the sequence.
Input: A = 3, N = 6, L = 4, R = 20 
Output: 11 
Explanation : 
11 is the 6th number which is not a multiple of 3 in the sequence. 
 

 

Naive Approach: The naive approach is to iterate over the range [L, R] in a loop to find the Nth number. The steps are: 
 

  1. Intialize the count of non-multiple number and current number to 0.
  2. Iterate over the range [L, R] until the count of the non-multiple number is not equal to N.
  3. Increment the count of the non-multiple number by 1, If the current number is not divisible by A.

Below is the implementation of the above approach: 
 



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find Nth number not a
// multiple of A in the range [L, R]
void count_no (int A, int N, int L, int R)
{
     
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
    if (i % A != 0)
        count += 1;
         
    if (count == N)
        break;
    }
    cout << i;
}
 
// Driver code
int main()
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
     
    // Function Call
    count_no (A, N, L, R);
    return 0;
}
 
// This code is contributed by mohit kumar 29

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
import java.io.*;
 
class GFG{
     
// Function to find Nth number not a
// multiple of A in the range [L, R]
static void count_no (int A, int N,
                      int L, int R)
{
 
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
        if (i % A != 0)
            count += 1;
     
        if (count == N)
            break;
    }
    System.out.println(i);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
 
    // Function call
    count_no (A, N, L, R);
}
}
 
// This code is contributed by sanjoy_62

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to find Nth number not a
# multiple of A in the range [L, R]
def count_no (A, N, L, R):
 
    # To store the count
    count = 0
 
    # To check all the nos in range
    for i in range ( L, R + 1 ):
        if ( i % A != 0 ):
            count += 1
 
        if ( count == N ):
            break
    print ( i )
     
# Given values of A, N, L, R
A, N, L, R = 3, 6, 4, 20
 
# Function Call
count_no (A, N, L, R)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
     
// Function to find Nth number not a
// multiple of A in the range [L, R]
static void count_no (int A, int N,
                      int L, int R)
{
     
    // To store the count
    int count = 0;
    int i = 0;
 
    // To check all the nos in range
    for(i = L; i < R + 1; i++)
    {
        if (i % A != 0)
            count += 1;
     
        if (count == N)
            break;
    }
    Console.WriteLine(i);
}
 
// Driver code
public static void Main()
{
     
    // Given values of A, N, L, R
    int A = 3, N = 6, L = 4, R = 20;
 
    // Function call
    count_no (A, N, L, R);
}
}
 
// This code is contributed by sanjoy_62

chevron_right


Output: 

11



 

Time Complexity: O(R – L) 
Auxiliary Space: O(1) 
 

Efficient Approach: 
The key observation is that there are A – 1 numbers that are not divisible by A in the range [1, A – 1]. Similarly, there are A – 1 numbers not divisible by A in range [A + 1, 2 * A – 1], [2 * A + 1, 3 * A – 1] and so on. 
With the help of this observation, the Nth number which is not divisible by A will be: 
 

N + \left \lfloor \frac{N - 1}{A - 1} \right \rfloor

To find the value in the range [ L, R ], we need to shift the origin from ‘0’ to ‘L – 1’, thus we can say that the Nth number which is not divisible by A in the range will be : 
 

 (L - 1) + \left \lfloor \frac{N - 1}{A - 1} \right \rfloor

However there is an edge case, when the value of ( L – 1 ) + N + floor( ( N – 1 ) / ( A – 1 ) ) itself turns out to be multiple of a ‘A’, in that case Nth number will be : 
 

 (L - 1) + \left \lfloor \frac{N - 1}{A - 1} \right \rfloor + 1

Below is the implementation of the above approach:
 

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
import math
 
# Function to find Nth number
# not a multiple of A in range [L, R]
def countNo (A, N, L, R):
 
    # Calculate the Nth no
    ans = L - 1 + N \
          + math.floor( ( N - 1 ) / ( A - 1 ) )
     
    # Check for the edge case
    if ans % A == 0:
        ans = ans + 1;
    print(ans)
 
# Input parameters
A, N, L, R = 5, 10, 4, 20
 
# Function Call
countNo(A, N, L, R)

chevron_right


Output: 

16



 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.