Fibonacci series = 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ……..

Different methods to find nth Fibonacci number are already discussed. Another simple way of finding nth Fibonacci number is using golden ratio as Fibonacci numbers maintain approximate golden ratio till infinite. **Golden ratio:**

Examples:

Input : n = 9 Output : 34 Input : n = 7 Output : 13

**Approach:**

Golden ratio may give us incorrect answer.

We can get correct result if we round up the result at each point.

nth fibonacci number = round(n-1th Fibonacci number X golden ratio) f_{n}= round(f_{n-1}* )

Till 4th term, the ratio is not much close to golden ratio (as 3/2 = 1.5, 2/1 = 2, …). So, we will consider from 5th term to get next fibonacci number. To find out the 9th fibonacci number f9 (n = 9) :

f6 = round(f5 * ) = 8 f7 = round(f6 * ) = 13 f8 = round(f7 * ) = 21 f9 = round(f8 * ) = 34

**Note:** This method can calculate first 34 fibonacci numbers correctly. After that there may be difference from the correct value.

Below is the implementation of above approach:

## CPP

`// CPP program to find n-th Fibonacci number` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Approximate value of golden ratio` `double` `PHI = 1.6180339;` `// Fibonacci numbers upto n = 5` `int` `f[6] = { 0, 1, 1, 2, 3, 5 };` `// Function to find nth` `// Fibonacci number` `int` `fib (` `int` `n)` `{` ` ` `// Fibonacci numbers for n < 6` ` ` `if` `(n < 6)` ` ` `return` `f[n];` ` ` `// Else start counting from` ` ` `// 5th term` ` ` `int` `t = 5, fn = 5;` ` ` `while` `(t < n) {` ` ` `fn = round(fn * PHI);` ` ` `t++;` ` ` `}` ` ` `return` `fn; ` `}` `// driver code` `int` `main()` `{` ` ` `int` `n = 9;` ` ` `cout << n << ` `"th Fibonacci Number = "` ` ` `<< fib(n) << endl;` ` ` `return` `0;` `}` |

## Java

`// Java program to find n-th Fibonacci number` `class` `GFG` `{` ` ` `// Approximate value of golden ratio` ` ` `static` `double` `PHI = ` `1.6180339` `;` ` ` ` ` `// Fibonacci numbers upto n = 5` ` ` `static` `int` `f[] = { ` `0` `, ` `1` `, ` `1` `, ` `2` `, ` `3` `, ` `5` `};` ` ` ` ` `// Function to find nth` ` ` `// Fibonacci number` ` ` `static` `int` `fib (` `int` `n)` ` ` `{` ` ` `// Fibonacci numbers for n < 6` ` ` `if` `(n < ` `6` `)` ` ` `return` `f[n];` ` ` ` ` `// Else start counting from` ` ` `// 5th term` ` ` `int` `t = ` `5` `;` ` ` `int` `fn = ` `5` `;` ` ` ` ` `while` `(t < n) {` ` ` `fn = (` `int` `)Math.round(fn * PHI);` ` ` `t++;` ` ` `}` ` ` ` ` `return` `fn;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `main (String[] args)` ` ` `{` ` ` `int` `n = ` `9` `;` ` ` `System.out.println(n + ` `"th Fibonacci Number = "` ` ` `+fib(n));` ` ` `}` `}` `// This code is contributed by Anant Agarwal.` |

## Python3

`# Python3 code to find n-th Fibonacci number` `# Approximate value of golden ratio` `PHI ` `=` `1.6180339` `# Fibonacci numbers upto n = 5` `f ` `=` `[ ` `0` `, ` `1` `, ` `1` `, ` `2` `, ` `3` `, ` `5` `]` `# Function to find nth` `# Fibonacci number` `def` `fib ( n ):` ` ` `# Fibonacci numbers for n < 6` ` ` `if` `n < ` `6` `:` ` ` `return` `f[n]` ` ` `# Else start counting from` ` ` `# 5th term` ` ` `t ` `=` `5` ` ` `fn ` `=` `5` ` ` ` ` `while` `t < n:` ` ` `fn ` `=` `round` `(fn ` `*` `PHI)` ` ` `t` `+` `=` `1` ` ` ` ` `return` `fn` `# driver code` `n ` `=` `9` `print` `(n, ` `"th Fibonacci Number ="` `, fib(n))` `# This code is contributed by "Sharad_Bhardwaj".` |

## C#

`// C# program to find n-th Fibonacci` `// number` `using` `System;` `class` `GFG {` ` ` ` ` `// Approximate value of golden ratio` ` ` `static` `double` `PHI = 1.6180339;` ` ` ` ` `// Fibonacci numbers upto n = 5` ` ` `static` `int` `[]f = { 0, 1, 1, 2, 3, 5 };` ` ` ` ` `// Function to find nth` ` ` `// Fibonacci number` ` ` `static` `int` `fib (` `int` `n)` ` ` `{` ` ` ` ` `// Fibonacci numbers for n < 6` ` ` `if` `(n < 6)` ` ` `return` `f[n];` ` ` ` ` `// Else start counting from` ` ` `// 5th term` ` ` `int` `t = 5;` ` ` `int` `fn = 5;` ` ` ` ` `while` `(t < n) {` ` ` `fn = (` `int` `)Math.Round(fn * PHI);` ` ` `t++;` ` ` `}` ` ` ` ` `return` `fn;` ` ` `}` ` ` ` ` `// Driver code` ` ` `public` `static` `void` `Main ()` ` ` `{` ` ` `int` `n = 9;` ` ` ` ` `Console.WriteLine(n + ` `"th Fibonacci"` ` ` `+ ` `" Number = "` `+ fib(n));` ` ` `}` `}` `// This code is contributed by vt_m.` |

## PHP

`<?php` `// PHP program to find n-th` `// Fibonacci number Approximate` `// value of golden ratio` `$PHI` `= 1.6180339;` `// Fibonacci numbers` `// upto n = 5` `// Function to find nth` `// Fibonacci number` `function` `fib (` `$n` `)` `{` ` ` `global` `$PHI` `;` ` ` `$f` `= ` `array` `(0, 1, 1, 2, 3, 5);` ` ` ` ` `// Fibonacci numbers` ` ` `// for n < 6` ` ` `if` `(` `$n` `< 6)` ` ` `return` `$f` `[` `$n` `];` ` ` `// Else start counting` ` ` `// from 5th term` ` ` `$t` `= 5;` ` ` `$fn` `= 5;` ` ` `while` `(` `$t` `< ` `$n` `)` ` ` `{` ` ` `$fn` `= ` `round` `(` `$fn` `* ` `$PHI` `);` ` ` `$t` `++;` ` ` `}` ` ` `return` `$fn` `;` `}` ` ` `// Driver Code` ` ` `$n` `= 9;` ` ` `echo` `$n` `, ` `"th Fibonacci Number = "` `,` ` ` `fib(` `$n` `), ` `"\n"` `;` `// This code is contributed by aj_36` `?>` |

## Javascript

`<script>` `// JavaScript program to find n-th Fibonacci number` ` ` `// Approximate value of golden ratio` ` ` `let PHI = 1.6180339;` ` ` ` ` `// Fibonacci numbers upto n = 5` ` ` `let f = [ 0, 1, 1, 2, 3, 5 ];` ` ` ` ` `// Function to find nth` ` ` `// Fibonacci number` ` ` `function` `fib (n)` ` ` `{` ` ` `// Fibonacci numbers for n < 6` ` ` `if` `(n < 6)` ` ` `return` `f[n];` ` ` ` ` `// Else start counting from ` ` ` `// 5th term` ` ` `let t = 5, fn = 5;` ` ` ` ` `while` `(t < n) {` ` ` `fn = Math.round(fn * PHI);` ` ` `t++;` ` ` `}` ` ` ` ` `return` `fn; ` ` ` `}` ` ` ` ` `// driver code` ` ` `let n = 9;` ` ` `document.write(n + ` `"th Fibonacci Number = "` `+ fib(n) + ` `"<br>"` `);` ` ` `// This code is contributed by Mayank Tyagi` `</script>` |

Output:

9th Fibonacci Number = 34

We can optimize above solution work in O(Log n) by using efficient method to compute power.

The above method may not always produce correct results as floating point computations are involved. This is the reason, this method is not used practically even if it can be optimized to work in O(Log n). Please refer below MIT video for more details.

https://www.youtube.com/watch?v=-EQTVuAhSFY

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the **Essential Maths for CP Course** at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**