Given a natural number N, the task is to find the next number having distinct digits from the given number.
Examples:
Input: N = 19
Output: 20
Explanation:
Next number to 19 whose digits are different from 19 is 20.
Input: N = 2019
Output: 3333
Explanation:
Next number to 2019 whose digits are different from 2019 is 3333.
Approach: The idea is to use hashing to compute the next number with distinct digit from the given number –
- Create a hash array to store the digits present in the number, store the most significant digit and also store the number of digits present in the number in a count variable
- Find the next digit for the most significant bit which is not present in the number and greater than the current most significant digit.
- If the next most significant digit is not found then increase the number of digits by incrementing the count and find the most significant digit between 1 to 9 which is not present in the number.
- If the next most significant digit is found then find the minimum digit next which is not present in the number between 0 to 9.
- Iterate over the number of digits from 1 to count
- Multiply the most significant digit by 10 and add the next digit which is not present in the given number.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void findNextNumber( int n)
{
int h[10] = { 0 };
int i = 0, msb = n, rem = 0;
int next_num = -1, count = 0;
while (msb > 9) {
rem = msb % 10;
h[rem] = 1;
msb /= 10;
count++;
}
h[msb] = 1;
count++;
for (i = msb + 1; i < 10; i++) {
if (h[i] == 0) {
next_num = i;
break ;
}
}
if (next_num == -1){
for (i = 1; i < msb; i++){
if (h[i] == 0){
next_num = i;
count++;
break ;
}
}
}
if (next_num > 0){
for (i = 0; i < 10; i++) {
if (h[i] == 0) {
msb = i;
break ;
}
}
for (i = 1; i < count; i++) {
next_num = ((next_num * 10) + msb);
}
if (next_num > n)
cout << next_num << "\n" ;
else
cout << "Not Possible \n" ;
}
else {
cout << "Not Possible \n" ;
}
}
int main()
{
int n = 2019;
findNextNumber(n);
return 0;
}
|
C
#include <stdio.h>
void findNextNumber( int n)
{
int h[10] = { 0 };
int i = 0, msb = n, rem = 0;
int next_num = -1, count = 0;
while (msb > 9) {
rem = msb % 10;
h[rem] = 1;
msb /= 10;
count++;
}
h[msb] = 1;
count++;
for (i = msb + 1; i < 10; i++) {
if (h[i] == 0) {
next_num = i;
break ;
}
}
if (next_num == -1){
for (i = 1; i < msb; i++){
if (h[i] == 0){
next_num = i;
count++;
break ;
}
}
}
if (next_num > 0){
for (i = 0; i < 10; i++) {
if (h[i] == 0) {
msb = i;
break ;
}
}
for (i = 1; i < count; i++) {
next_num = ((next_num * 10) + msb);
}
if (next_num > n)
printf ( "%d\n" , next_num);
else
printf ( "\nNot Possible" );
}
else {
printf ( "Not Possible \n" );
}
}
int main()
{
int n = 2019;
findNextNumber(n);
return 0;
}
|
Java
class GFG{
static void findNextNumber( int n)
{
int h[] = new int [ 10 ];
int i = 0 , msb = n, rem = 0 ;
int next_num = - 1 , count = 0 ;
while (msb > 9 ) {
rem = msb % 10 ;
h[rem] = 1 ;
msb /= 10 ;
count++;
}
h[msb] = 1 ;
count++;
for (i = msb + 1 ; i < 10 ; i++) {
if (h[i] == 0 ) {
next_num = i;
break ;
}
}
if (next_num == - 1 ){
for (i = 1 ; i < msb; i++){
if (h[i] == 0 ){
next_num = i;
count++;
break ;
}
}
}
if (next_num > 0 ){
for (i = 0 ; i < 10 ; i++) {
if (h[i] == 0 ) {
msb = i;
break ;
}
}
for (i = 1 ; i < count; i++) {
next_num = ((next_num * 10 ) + msb);
}
if (next_num > n)
System.out.print(next_num+ "\n" );
else
System.out.print( "Not Possible \n" );
}
else {
System.out.print( "Not Possible \n" );
}
}
public static void main(String[] args)
{
int n = 2019 ;
findNextNumber(n);
}
}
|
C#
using System;
class GFG{
static void findNextNumber( int n)
{
int []h = new int [10];
int i = 0, msb = n, rem = 0;
int next_num = -1, count = 0;
while (msb > 9) {
rem = msb % 10;
h[rem] = 1;
msb /= 10;
count++;
}
h[msb] = 1;
count++;
for (i = msb + 1; i < 10; i++) {
if (h[i] == 0) {
next_num = i;
break ;
}
}
if (next_num == -1){
for (i = 1; i < msb; i++){
if (h[i] == 0){
next_num = i;
count++;
break ;
}
}
}
if (next_num > 0){
for (i = 0; i < 10; i++) {
if (h[i] == 0) {
msb = i;
break ;
}
}
for (i = 1; i < count; i++) {
next_num = ((next_num * 10) + msb);
}
if (next_num > n)
Console.WriteLine(next_num);
else
Console.WriteLine( "Not Possible" );
}
else {
Console.WriteLine( "Not Possible" );
}
}
public static void Main( string [] args)
{
int n = 2019;
findNextNumber(n);
}
}
|
Python 3
def findNextNumber(n):
h = [ 0 for i in range ( 10 )]
i = 0
msb = n
rem = 0
next_num = - 1
count = 0
while (msb > 9 ):
rem = msb % 10
h[rem] = 1
msb / / = 10
count + = 1
h[msb] = 1
count + = 1
for i in range (msb + 1 , 10 , 1 ):
if (h[i] = = 0 ):
next_num = i
break
if (next_num = = - 1 ):
for i in range ( 1 ,msb, 1 ):
if (h[i] = = 0 ):
next_num = i
count + = 1
break
if (next_num > 0 ):
for i in range ( 0 , 10 , 1 ):
if (h[i] = = 0 ):
msb = i
break
for i in range ( 1 ,count, 1 ):
next_num = ((next_num * 10 ) + msb)
if (next_num > n):
print (next_num)
else :
print ( "Not Possible" )
else :
print ( "Not Possible" )
if __name__ = = '__main__' :
n = 2019
findNextNumber(n)
|
Javascript
<script>
function findNextNumber(n)
{
let h = Array.from({length: 10}, (_, i) => 0);
let i = 0, msb = n, rem = 0;
let next_num = -1, count = 0;
while (msb > 9) {
rem = msb % 10;
h[rem] = 1;
msb = Math.floor(msb / 10);
count++;
}
h[msb] = 1;
count++;
for (i = msb + 1; i < 10; i++) {
if (h[i] == 0) {
next_num = i;
break ;
}
}
if (next_num == -1){
for (i = 1; i < msb; i++){
if (h[i] == 0){
next_num = i;
count++;
break ;
}
}
}
if (next_num > 0){
for (i = 0; i < 10; i++) {
if (h[i] == 0) {
msb = i;
break ;
}
}
for (i = 1; i < count; i++) {
next_num = ((next_num * 10) + msb);
}
if (next_num > n)
document.write(next_num+ "\n" );
else
document.write( "Not Possible \n" );
}
else {
document.write( "Not Possible \n" );
}
}
let n = 2019;
findNextNumber(n);
</script>
|
Time Complexity: O(logN)
Auxiliary Space: O(logN)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
26 May, 2022
Like Article
Save Article