Find if neat arrangement of cups and shelves can be made
Given three different types of cups (a[]) and saucers (b[]), and n number of shelves, find if neat arrangement of cups and shelves can be made.
Arrangement of the cups and saucers will be neat if it follows the below rules:
- No shelf can contain both cups and saucers
- There can be no more than 5 cups in any shelf
- There can be no more than 10 saucers in any shelf
Examples:
Input : a[] = {3, 2, 6}, b[] = {4, 8, 9}, n = 10
Output : Yes
Explanation :
Total cups = 11, shelves required = 3
Total saucers = 21, shelves required = 3
Total required shelves = 3 + 3 = 6,
which is less than given number of shelves n. So, output is Yes.Input : a[] = {4, 7, 4}, b[] = {3, 9, 10}, n = 2
Output : No
Approach: To arrange the cups and the saucers, find out the total number of cups and total number of saucers
. Since, there cannot be more than 5 cups on the same shelf, therefore find out the maximum number of shelves required for cup by the formula
and the maximum number of shelves required for saucers by using the formula
. If sum of these two values is equal to or less than
then the arrangement is possible otherwise not.
Below is the implementation of above approach :
C++
// C++ code to find if neat // arrangement of cups and // shelves can be made #include<bits/stdc++.h> using namespace std; // Function to check arrangement void canArrange( int a[], int b[], int n) { int suma = 0, sumb = 0; // Calculating total number // of cups for ( int i = 0; i < 3; i++) suma += a[i]; // Calculating total number // of saucers for ( int i = 0; i < 3; i++) sumb += b[i]; // Adding 5 and 10 so that if the // total sum is less than 5 and // 10 then we can get 1 as the // answer and not 0 int na = (suma + 5 - 1) / 5; int nb = (sumb + 10 - 1) / 10; if (na + nb <= n) cout << "Yes" ; else cout << "No" ; } // Driver code int main() { // Number of cups of each type int a[] = {3, 2, 6}; // Number of saucers of each type int b[] = {4, 8, 9}; // Number of shelves int n = 10; // Calling function canArrange(a, b, n); return 0; } |
Java
// Java code to find if neat // arrangement of cups and // shelves can be made import java.io.*; class Gfg { // Function to check arrangement public static void canArrange( int a[], int b[], int n) { int suma = 0 , sumb = 0 ; // Calculating total number // of cups for ( int i = 0 ; i < 3 ; i++) suma += a[i]; // Calculating total number // of saucers for ( int i = 0 ; i < 3 ; i++) sumb += b[i]; // Adding 5 and 10 so that if // the total sum is less than // 5 and 10 then we can get 1 // as the answer and not 0 int na = (suma + 5 - 1 ) / 5 ; int nb = (sumb + 10 - 1 ) / 10 ; if (na + nb <= n) System.out.println( "Yes" ); else System.out.println( "No" ); } // Driver function public static void main(String args[]) { // Number of cups of each type int a[] = { 3 , 2 , 6 }; // Number of saucers of each type int b[] = { 4 , 8 , 9 }; // Number of shelves int n = 10 ; // Calling function canArrange(a, b, n); } } |
Python 3
# Python code to find if neat # arrangement of cups and # shelves can be made import math # Function to check arrangement def canArrange( a, b, n): suma = 0 sumb = 0 # Calculating total number # of cups for i in range ( 0 , len (a)): suma + = a[i] # Calculating total number # of saucers for i in range ( 0 , len (b)): sumb + = b[i] # Adding 5 and 10 so that if # the total sum is less than # 5 and 10 then we can get 1 # as the answer and not 0 na = (suma + 5 - 1 ) / 5 nb = (sumb + 10 - 1 ) / 10 if (na + nb < = n): print ( "Yes" ) else : print ( "No" ) # driver function #Number of cups of each type a = [ 3 , 2 , 6 ] # Number of saucers of each type b = [ 4 , 8 , 9 ] # Number of shelves n = 10 #Calling function canArrange(a ,b ,n) # This code is contributed by Gitanjali. |
C#
// C# code to find if neat // arrangement of cups and // shelves can be made using System; class Gfg { // Function to check arrangement public static void canArrange( int []a, int []b, int n) { int suma = 0, sumb = 0; // Calculating total number // of cups for ( int i = 0; i < 3; i++) suma += a[i]; // Calculating total number // of saucers for ( int i = 0; i < 3; i++) sumb += b[i]; // Adding 5 and 10 so that if // the total sum is less than // 5 and 10 then we can get 1 // as the answer and not 0 int na = (suma + 5 - 1) / 5; int nb = (sumb + 10 - 1) / 10; if (na + nb <= n) Console.WriteLine( "Yes" ); else Console.WriteLine( "No" ); } // Driver function public static void Main() { // Number of cups of each type int []a = {3, 2, 6}; // Number of saucers of each type int []b = {4, 8, 9}; // Number of shelves int n = 10; // Calling function canArrange(a, b, n); } } // This code is contributed by vt_m. |
PHP
<?php // PHP code to find if neat // arrangement of cups and // shelves can be made // Function to check arrangement function canArrange( $a , $b , $n ) { $suma = 0; $sumb = 0; // Calculating total number // of cups for ( $i = 0; $i < 3; $i ++) $suma += $a [ $i ]; // Calculating total number // of saucers for ( $i = 0; $i < 3; $i ++) $sumb += $b [ $i ]; // Adding 5 and 10 so that if the // total sum is less than 5 and // 10 then we can get 1 as the // answer and not 0 $na = ( $suma + 5 - 1) / 5; $nb = ( $sumb + 10 - 1) / 10; if ( $na + $nb <= $n ) echo "Yes" ; else echo "No" ; } // Driver code // Number of cups of each type $a = array (3, 2, 6); // Number of saucers of each type $b = array (4, 8, 9); // Number of shelves $n = 10; // Calling function canArrange( $a , $b , $n ); // This code is contributed by vt_m. ?> |
Javascript
<script> // Javascript code to find if neat // arrangement of cups and // shelves can be made // Function to check arrangement function canArrange( a, b, n) { let suma = 0, sumb = 0; // Calculating total number // of cups for (let i = 0; i < 3; i++) suma += a[i]; // Calculating total number // of saucers for (let i = 0; i < 3; i++) sumb += b[i]; // Adding 5 and 10 so that if the // total sum is less than 5 and // 10 then we can get 1 as the // answer and not 0 let na = Math.floor((suma + 5 - 1)/5); let nb = Math.floor((sumb + 10 - 1)/10); if (na + nb <= n) document.write( "Yes" ); else document.write( "No" ); } // driver code // Number of cups of each type let a = [3, 2, 6]; // Number of saucers of each type let b = [4, 8, 9]; // Number of shelves let n = 10; // Calling function canArrange(a, b, n); </script> |
Yes
Time complexity: O(1)
Auxiliary space: O(1)
Please Login to comment...