Given an integer . The task is to count all such numbers that are less than or equal to N which are divisible by any of 2 or 3 or 5.**Note**: If a number less than N is divisible by both 2 or 3, or 3 or 5, or all of 2,3 and 5 then also it should be counted only once.**Examples**:

Input : N = 5 Output : 4 Input : N = 10 Output : 8

**Simple Approach:** A simple approach is to traverse from 1 to N and count multiple of 2, 3, 5 which are less than equal to N. To do this, iterate up to N and just check whether a number is divisible by 2 or 3 or 5. If it is divisible, increment the counter and after reaching N, print the result.*Time Complexity*: O(N).**Efficient Approach:** An efficient approach is to use the concept of set theory. As we have to find numbers that are divisible by 2 or 3 or 5.

Now the task is to find n(a),n(b),n(c),n(ab), n(bc), n(ac), and n(abc). All these terms can be calculated using Bit masking. In this problem we have taken three numbers 2,3, and 5. So, the bit mask should be of 2^3 bits i.e 8 to generate all combination of 2,3, and 5.

Now according to the formula of set union, all terms containing odd numbers of (2,3,5) will add into the result and terms containing even number of (2,3,5) will get subtracted.

Below is the implementation of the above approach:

## C++

`// CPP program to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `int` `countMultiples(` `int` `n)` `{` ` ` `// As we have to check divisibility` ` ` `// by three numbers, So we can implement` ` ` `// bit masking` ` ` `int` `multiple[] = { 2, 3, 5 };` ` ` ` ` `int` `count = 0, mask = ` `pow` `(2, 3);` ` ` ` ` `for` `(` `int` `i = 1; i < mask; i++) {` ` ` `// we check whether jth bit` ` ` `// is set or not, if jth bit` ` ` `// is set, simply multiply` ` ` `// to prod` ` ` `int` `prod = 1;` ` ` ` ` `for` `(` `int` `j = 0; j < 3; j++) {` ` ` `// check for set bit` ` ` `if` `(i & 1 << j)` ` ` `prod = prod * multiple[j];` ` ` `}` ` ` ` ` `// check multiple of product` ` ` `if` `(__builtin_popcount(i) % 2 == 1)` ` ` `count = count + n / prod;` ` ` `else` ` ` `count = count - n / prod;` ` ` `}` ` ` ` ` `return` `count;` `}` `// Driver code` `int` `main()` `{` ` ` `int` `n = 10;` ` ` ` ` `cout << countMultiples(n) << endl;` ` ` ` ` `return` `0;` `}` |

## Java

`// Java program to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `class` `GFG{` `static` `int` `count_setbits(` `int` `N)` `{` ` ` `int` `cnt=` `0` `;` ` ` `while` `(N>` `0` `)` ` ` `{` ` ` `cnt+=(N&` `1` `);` ` ` `N=N>>` `1` `;` ` ` `}` ` ` `return` `cnt;` `}` `// Function to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `static` `int` `countMultiples(` `int` `n)` `{` ` ` `// As we have to check divisibility` ` ` `// by three numbers, So we can implement` ` ` `// bit masking` ` ` `int` `multiple[] = { ` `2` `, ` `3` `, ` `5` `};` ` ` ` ` `int` `count = ` `0` `, mask = (` `int` `)Math.pow(` `2` `, ` `3` `);` ` ` ` ` `for` `(` `int` `i = ` `1` `; i < mask; i++) {` ` ` `// we check whether jth bit` ` ` `// is set or not, if jth bit` ` ` `// is set, simply multiply` ` ` `// to prod` ` ` `int` `prod = ` `1` `;` ` ` ` ` `for` `(` `int` `j = ` `0` `; j < ` `3` `; j++) {` ` ` `// check for set bit` ` ` `if` `((i & ` `1` `<< j)>` `0` `)` ` ` `prod = prod * multiple[j];` ` ` `}` ` ` ` ` `// check multiple of product` ` ` `if` `(count_setbits(i) % ` `2` `== ` `1` `)` ` ` `count = count + n / prod;` ` ` `else` ` ` `count = count - n / prod;` ` ` `}` ` ` ` ` `return` `count;` `}` `// Driver code` `public` `static` `void` `main(String[] args)` `{` ` ` `int` `n = ` `10` `;` ` ` ` ` `System.out.println(countMultiples(n));` `}` `}` `// this code is contributed by mits` |

## Python 3

`# Python3 program to count number of multiples` `# of 2 or 3 or 5 less than or equal to N` `# Function to count number of multiples` `# of 2 or 3 or 5 less than or equal to N` `def` `countMultiples( n):` ` ` `# As we have to check divisibility` ` ` `# by three numbers, So we can implement` ` ` `# bit masking` ` ` `multiple ` `=` `[ ` `2` `, ` `3` `, ` `5` `]` ` ` ` ` `count ` `=` `0` ` ` `mask ` `=` `int` `(` `pow` `(` `2` `, ` `3` `))` ` ` `for` `i ` `in` `range` `(` `1` `,mask):` ` ` `# we check whether jth bit` ` ` `# is set or not, if jth bit` ` ` `# is set, simply multiply` ` ` `# to prod` ` ` `prod ` `=` `1` ` ` `for` `j ` `in` `range` `(` `3` `):` ` ` `# check for set bit` ` ` `if` `(i & (` `1` `<< j)):` ` ` `prod ` `=` `prod ` `*` `multiple[j]` ` ` ` ` `# check multiple of product` ` ` `if` `(` `bin` `(i).count(` `'1'` `) ` `%` `2` `=` `=` `1` `):` ` ` `count ` `=` `count ` `+` `n ` `/` `/` `prod` ` ` `else` `:` ` ` `count ` `=` `count ` `-` `n ` `/` `/` `prod` ` ` ` ` `return` `count` `# Driver code` `if` `__name__` `=` `=` `'__main__'` `:` ` ` `n ` `=` `10` ` ` `print` `(countMultiples(n))` ` ` `# This code is contributed by ash264` |

## C#

`// C# program to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `using` `System;` `public` `class` `GFG{` ` ` `static` `int` `count_setbits(` `int` `N)` `{` ` ` `int` `cnt=0;` ` ` `while` `(N>0)` ` ` `{` ` ` `cnt+=(N&1);` ` ` `N=N>>1;` ` ` `}` ` ` `return` `cnt;` `}` `// Function to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `static` `int` `countMultiples(` `int` `n)` `{` ` ` `// As we have to check divisibility` ` ` `// by three numbers, So we can implement` ` ` `// bit masking` ` ` `int` `[]multiple = { 2, 3, 5 };` ` ` ` ` `int` `count = 0, mask = (` `int` `)Math.Pow(2, 3);` ` ` ` ` `for` `(` `int` `i = 1; i < mask; i++) {` ` ` `// we check whether jth bit` ` ` `// is set or not, if jth bit` ` ` `// is set, simply multiply` ` ` `// to prod` ` ` `int` `prod = 1;` ` ` ` ` `for` `(` `int` `j = 0; j < 3; j++) {` ` ` `// check for set bit` ` ` `if` `((i & 1 << j)>0)` ` ` `prod = prod * multiple[j];` ` ` `}` ` ` ` ` `// check multiple of product` ` ` `if` `(count_setbits(i) % 2 == 1)` ` ` `count = count + n / prod;` ` ` `else` ` ` `count = count - n / prod;` ` ` `}` ` ` ` ` `return` `count;` `}` `// Driver code` ` ` `static` `public` `void` `Main (){` ` ` ` ` `int` `n = 10;` ` ` ` ` `Console.WriteLine(countMultiples(n));` `}` `}` `//This code is contributed by ajit.` |

## PHP

`<?php` `// PHP program to count number` `// of multiples of 2 or 3 or 5` `// less than or equal to N` `// Bit count function` `function` `popcount(` `$value` `)` `{` ` ` `$count` `= 0;` ` ` `while` `(` `$value` `)` ` ` `{` ` ` `$count` `+= (` `$value` `& 1);` ` ` `$value` `= ` `$value` `>> 1;` ` ` `}` ` ` `return` `$count` `;` `}` `// Function to count number of ` `// multiples of 2 or 3 or 5 less` `// than or equal to N` `function` `countMultiples(` `$n` `)` `{` ` ` `// As we have to check divisibility` ` ` `// by three numbers, So we can` ` ` `// implement bit masking` ` ` `$multiple` `= ` `array` `(2, 3, 5);` ` ` ` ` `$count` `= 0;` ` ` `$mask` `= pow(2, 3);` ` ` ` ` `for` `(` `$i` `= 1; ` `$i` `< ` `$mask` `; ` `$i` `++)` ` ` `{` ` ` `// we check whether jth bit` ` ` `// is set or not, if jth bit` ` ` `// is set, simply multiply` ` ` `// to prod` ` ` `$prod` `= 1;` ` ` ` ` `for` `(` `$j` `= 0; ` `$j` `< 3; ` `$j` `++)` ` ` `{` ` ` `// check for set bit` ` ` `if` `(` `$i` `& 1 << ` `$j` `)` ` ` `$prod` `= ` `$prod` `* ` `$multiple` `[` `$j` `];` ` ` `}` ` ` ` ` `// check multiple of product` ` ` `if` `(popcount(` `$i` `) % 2 == 1)` ` ` `$count` `= ` `$count` `+ (int)(` `$n` `/ ` `$prod` `);` ` ` ` ` `else` ` ` `$count` `= ` `$count` `- (int)(` `$n` `/ ` `$prod` `);` ` ` ` ` `}` ` ` ` ` `return` `$count` `;` `}` `// Driver code` `$n` `= 10;` ` ` `echo` `countMultiples(` `$n` `);` ` ` `// This code is contributed by ash264` `?>` |

## Javascript

`<script>` `// javascript program to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `function` `count_setbits(N)` `{` ` ` `var` `cnt=0;` ` ` `while` `(N>0)` ` ` `{` ` ` `cnt+=(N&1);` ` ` `N=N>>1;` ` ` `}` ` ` `return` `cnt;` `}` `// Function to count number of multiples` `// of 2 or 3 or 5 less than or equal to N` `function` `countMultiples(n)` `{` ` ` `// As we have to check divisibility` ` ` `// by three numbers, So we can implement` ` ` `// bit masking` ` ` `var` `multiple = [ 2, 3, 5 ];` ` ` ` ` `var` `count = 0, mask = parseInt(Math.pow(2, 3));` ` ` ` ` `for` `(i = 1; i < mask; i++) {` ` ` `// we check whether jth bit` ` ` `// is set or not, if jth bit` ` ` `// is set, simply multiply` ` ` `// to prod` ` ` `var` `prod = 1;` ` ` ` ` `for` `(j = 0; j < 3; j++) {` ` ` `// check for set bit` ` ` `if` `((i & 1 << j)>0)` ` ` `prod = prod * multiple[j];` ` ` `}` ` ` ` ` `// check multiple of product` ` ` `if` `(count_setbits(i) % 2 == 1)` ` ` `count = count + parseInt(n / prod);` ` ` `else` ` ` `count = count - parseInt(n / prod);` ` ` `}` ` ` ` ` `return` `count;` `}` `// Driver code` `var` `n = 10;` `document.write(countMultiples(n));` `// This code is contributed by 29AjayKumar` `</script>` |

**Output:**

8

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.