Given an array arr[] of n distinct integers. Elements are placed sequentially in ascending order with one element missing. The task is to find the missing element.
Examples:
Input: arr[] = {1, 2, 4, 5, 6, 7, 8, 9}
Output: 3
Input: arr[] = {-4, -3, -1, 0, 1, 2}
Output: -2
Input: arr[] = {1, 2, 3, 4}
Output: -1
No element is missing.
Principles:
- Look for inconsistency: Ideally, the difference between any element and its index must be arr[0] for every element.
Example,
A[] = {1, 2, 3, 4, 5} -> Consistent
B[] = {101, 102, 103, 104} -> Consistent
C[] = {1, 2, 4, 5, 6} -> Inconsistent as C[2] – 2 != C[0] i.e. 4 – 2 != 1
- Finding inconsistency helps to scan only half of the array each time in O(logN).
Algorithm
- Find middle element and check if it’s consistent.
- If middle element is consistent, then check if the difference between middle element and its next element is greater than 1 i.e. check if arr[mid + 1] – arr[mid] > 1
- If yes, then arr[mid] + 1 is the missing element.
- If not, then we have to scan the right half array from the middle element and jump to step-1.
- If middle element is inconsistent, then check if the difference between middle element and its previous element is greater than 1 i.e. check if arr[mid] – arr[mid – 1] > 1
- If yes, then arr[mid] – 1 is the missing element.
- If not, then we have to scan the left half array from the middle element and jump to step-1.
Below is the implementation of the above approach:
C++
#include<bits/stdc++.h>
using namespace std;
int findMissing( int arr[], int n)
{
int l = 0, h = n - 1;
int mid;
while (h > l)
{
mid = l + (h - l) / 2;
if (arr[mid] - mid == arr[0])
{
if (arr[mid + 1] - arr[mid] > 1)
return arr[mid] + 1;
else
{
l = mid + 1;
}
}
else
{
if (arr[mid] - arr[mid - 1] > 1)
return arr[mid] - 1;
else
{
h = mid - 1;
}
}
}
return -1;
}
int main()
{
int arr[] = { -9, -8, -7, -5, -4, -3, -2, -1, 0 };
int n = sizeof (arr)/ sizeof (arr[0]);
cout << (findMissing(arr, n));
}
|
Java
class GFG {
public static int findMissing( int arr[], int n)
{
int l = 0 , h = n - 1 ;
int mid;
while (h > l) {
mid = l + (h - l) / 2 ;
if (arr[mid] - mid == arr[ 0 ]) {
if (arr[mid + 1 ] - arr[mid] > 1 )
return arr[mid] + 1 ;
else {
l = mid + 1 ;
}
}
else {
if (arr[mid] - arr[mid - 1 ] > 1 )
return arr[mid] - 1 ;
else {
h = mid - 1 ;
}
}
}
return - 1 ;
}
public static void main(String args[])
{
int arr[] = { - 9 , - 8 , - 7 , - 5 , - 4 , - 3 , - 2 , - 1 , 0 };
int n = arr.length;
System.out.print(findMissing(arr, n));
}
}
|
Python3
def findMissing(arr, n):
l, h = 0 , n - 1
mid = 0
while (h > l):
mid = l + (h - l) / / 2
if (arr[mid] - mid = = arr[ 0 ]):
if (arr[mid + 1 ] - arr[mid] > 1 ):
return arr[mid] + 1
else :
l = mid + 1
else :
if (arr[mid] - arr[mid - 1 ] > 1 ):
return arr[mid] - 1
else :
h = mid - 1
return - 1
arr = [ - 9 , - 8 , - 7 , - 5 , - 4 , - 3 , - 2 , - 1 , 0 ]
n = len (arr)
print (findMissing(arr, n))
|
C#
using System;
class GFG
{
public static int findMissing( int [] arr, int n)
{
int l = 0, h = n - 1;
int mid;
while (h > l)
{
mid = l + (h - l) / 2;
if (arr[mid] - mid == arr[0])
{
if (arr[mid + 1] - arr[mid] > 1)
return arr[mid] + 1;
else
{
l = mid + 1;
}
}
else
{
if (arr[mid] - arr[mid - 1] > 1)
return arr[mid] - 1;
else
{
h = mid - 1;
}
}
}
return -1;
}
public static void Main()
{
int [] arr = { -9, -8, -7, -5, -4, -3, -2, -1, 0 };
int n = arr.Length;
Console.WriteLine(findMissing(arr, n));
}
}
|
PHP
<?php
function findMissing( $arr , $n )
{
$l = 0; $h = $n - 1;
while ( $h > $l )
{
$mid = floor ( $l + ( $h - $l ) / 2);
if ( $arr [ $mid ] - $mid == $arr [0])
{
if ( $arr [ $mid + 1] - $arr [ $mid ] > 1)
return $arr [ $mid ] + 1;
else
{
$l = $mid + 1;
}
}
else
{
if ( $arr [ $mid ] - $arr [ $mid - 1] > 1)
return $arr [ $mid ] - 1;
else
{
$h = $mid - 1;
}
}
}
return -1;
}
$arr = array ( -9, -8, -7, -5, -
4, -3, -2, -1, 0 );
$n = count ( $arr );
echo findMissing( $arr , $n );
?>
|
Javascript
<script>
function findMissing(arr, n)
{
let l = 0, h = n - 1;
let mid;
while (h > l)
{
mid = l + Math.floor((h - l) / 2);
if (arr[mid] - mid == arr[0])
{
if (arr[mid + 1] - arr[mid] > 1)
return arr[mid] + 1;
else
{
l = mid + 1;
}
}
else
{
if (arr[mid] - arr[mid - 1] > 1)
return arr[mid] - 1;
else
{
h = mid - 1;
}
}
}
return -1;
}
let arr = [ -9, -8, -7, -5, -4, -3, -2, -1, 0 ];
let n = arr.length;
document.write(findMissing(arr, n));
</script>
|
Time Complexity : O(log(N) )
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
05 Aug, 2021
Like Article
Save Article