Skip to content
Related Articles

Related Articles

Improve Article

Find minimum steps required to reach the end of a matrix | Set – 1

  • Difficulty Level : Expert
  • Last Updated : 12 Sep, 2021

Given a 2d-matrix consisting of positive integers, the task is to find the minimum number of steps required to reach the end(leftmost-bottom cell) of the matrix. If we are at cell (i, j) we can go to cells (i, j+arr[i][j]) or (i+arr[i][j], j). We can not go out of bounds. If no path exists, print -1.

Examples: 

Input : 
mat[][] = {{2, 1, 2},
           {1, 1, 1},
           {1, 1, 1}}
Output : 2
Explanation : The path will be {0, 0} -> {0, 2} -> {2, 2}
Thus, we are reaching end in two steps.

Input :
mat[][] = {{1, 1, 2},
           {1, 1, 1},
           {2, 1, 1}}
Output : 3

A simple solution is to explore all possible solutions. This will take exponential time.
Better approach: We can use dynamic programming to solve this problem in polynomial time.
Let’s decide the states of ‘dp’. We will build up our solution on 2d DP. 
Let’s say we are at cell {i, j}. We will try to find the minimum number of steps required to reach the cell (n-1, n-1) from this cell. 
We only have two possible paths i.e. to cells {i, j+arr[i][j]} or {i+arr[i][j], j}.
A simple recurrence relation will be: 

dp[i][j] = 1 + min(dp[i+arr[i]][j], dp[i][j+arr[i][j]])

Below is the implementation of the above idea: 

C++




// C++ program to implement above approach
 
#include <bits/stdc++.h>
#define n 3
using namespace std;
 
// 2d array to store
// states of dp
int dp[n][n];
 
// array to determine whether
// a state has been solved before
int v[n][n];
 
// Function to find the minimum number of
// steps to reach the end of matrix
int minSteps(int i, int j, int arr[][n])
{
    // base cases
    if (i == n - 1 and j == n - 1)
        return 0;
 
    if (i > n - 1 || j > n - 1)
        return 9999999;
 
    // if a state has been solved before
    // it won't be evaluated again.
    if (v[i][j])
        return dp[i][j];
 
    v[i][j] = 1;
 
    // recurrence relation
    dp[i][j] = 1 + min(minSteps(i + arr[i][j], j, arr),
                       minSteps(i, j + arr[i][j], arr));
 
    return dp[i][j];
}
 
// Driver Code
int main()
{
    int arr[n][n] = { { 2, 1, 2 },
                      { 1, 1, 1 },
                      { 1, 1, 1 } };
 
    int ans = minSteps(0, 0, arr);
    if (ans >= 9999999)
        cout << -1;
    else
        cout << ans;
 
    return 0;
}

Java




// Java program to implement above approach
class GFG {
 
    static int n = 3;
 
    // 2d array to store
    // states of dp
    static int dp[][] = new int[n][n];
 
    // array to determine whether
    // a state has been solved before
    static int[][] v = new int[n][n];
 
    // Function to find the minimum number of
    // steps to reach the end of matrix
    static int minSteps(int i, int j, int arr[][])
    {
        // base cases
        if (i == n - 1 && j == n - 1) {
            return 0;
        }
 
        if (i > n - 1 || j > n - 1) {
            return 9999999;
        }
 
        // if a state has been solved before
        // it won't be evaluated again.
        if (v[i][j] == 1) {
            return dp[i][j];
        }
 
        v[i][j] = 1;
 
        // recurrence relation
        dp[i][j] = 1 + Math.min(minSteps(i + arr[i][j], j, arr), minSteps(i, j + arr[i][j], arr));
 
        return dp[i][j];
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int arr[][] = { { 2, 1, 2 },
                        { 1, 1, 1 },
                        { 1, 1, 1 } };
 
        int ans = minSteps(0, 0, arr);
        if (ans >= 9999999) {
            System.out.println(-1);
        }
        else {
            System.out.println(ans);
        }
    }
}
 
// This code contributed by Rajput-Ji

Python3




# Python3 program to implement above approach
import numpy as np;
 
n = 3
 
# 2d array to store
# states of dp
dp = np.zeros((n, n));
 
# array to determine whether
# a state has been solved before
v = np.zeros((n, n));
 
# Function to find the minimum number of
# steps to reach the end of matrix
def minSteps(i, j, arr) :
 
    # base cases
    if (i == n - 1 and j == n - 1) :
        return 0;
 
    if (i > n - 1 or j > n - 1) :
        return 9999999;
 
    # if a state has been solved before
    # it won't be evaluated again.
    if (v[i][j]) :
        return dp[i][j];
 
    v[i][j] = 1;
 
    # recurrence relation
    dp[i][j] = 1 + min(minSteps(i + arr[i][j], j, arr),
                    minSteps(i, j + arr[i][j], arr));
 
    return dp[i][j];
 
 
# Driver Code
arr = [ [ 2, 1, 2 ],
            [ 1, 1, 1 ],
            [ 1, 1, 1 ]
            ];
             
ans = minSteps(0, 0, arr);
if (ans >= 9999999) :
    print(-1);
         
else :
    print(ans);
 
# This code is contributed by AnkitRai01

C#




// C# program to implement above approach
using System;
 
class GFG
{
     
    static int n = 3;
 
    // 2d array to store
    // states of dp
    static int [,]dp = new int[n, n];
 
    // array to determine whether
    // a state has been solved before
    static int[,] v = new int[n, n];
 
    // Function to find the minimum number of
    // steps to reach the end of matrix
    static int minSteps(int i, int j, int [,]arr)
    {
        // base cases
        if (i == n - 1 && j == n - 1)
        {
            return 0;
        }
 
        if (i > n - 1 || j > n - 1)
        {
            return 9999999;
        }
 
        // if a state has been solved before
        // it won't be evaluated again.
        if (v[i, j] == 1)
        {
            return dp[i, j];
        }
 
        v[i, j] = 1;
 
        // recurrence relation
        dp[i, j] = 1 + Math.Min(minSteps(i + arr[i,j], j, arr),
                            minSteps(i, j + arr[i,j], arr));
 
        return dp[i, j];
    }
 
    // Driver Code
    static public void Main ()
    {
        int [,]arr = { { 2, 1, 2 },
                        { 1, 1, 1 },
                        { 1, 1, 1 } };
 
        int ans = minSteps(0, 0, arr);
        if (ans >= 9999999)
        {
            Console.WriteLine(-1);
        }
        else
        {
            Console.WriteLine(ans);
        }
    }
}
 
// This code contributed by ajit.

Javascript




<script>
 
    // Javascript program to implement
    // above approach
     
    let n = 3;
   
    // 2d array to store
    // states of dp
    let dp = new Array(n);
    for(let i = 0; i < n; i++)
    {
        dp[i] = new Array(n);
    }
   
    // array to determine whether
    // a state has been solved before
    let v = new Array(n);
    for(let i = 0; i < n; i++)
    {
        v[i] = new Array(n);
    }
   
    // Function to find the minimum number of
    // steps to reach the end of matrix
    function minSteps(i, j, arr)
    {
        // base cases
        if (i == n - 1 && j == n - 1)
        {
            return 0;
        }
   
        if (i > n - 1 || j > n - 1)
        {
            return 9999999;
        }
   
        // if a state has been solved before
        // it won't be evaluated again.
        if (v[i][j] == 1) {
            return dp[i][j];
        }
   
        v[i][j] = 1;
   
        // recurrence relation
        dp[i][j] = 1 + Math.min(minSteps(i +
        arr[i][j], j, arr), minSteps(i, j + arr[i][j], arr));
   
        return dp[i][j];
    }
     
    let arr = [ [ 2, 1, 2 ],
               [ 1, 1, 1 ],
               [ 1, 1, 1 ] ];
   
    let ans = minSteps(0, 0, arr);
    if (ans >= 9999999) {
      document.write(-1);
    }
    else {
      document.write(ans);
    }
     
</script>
Output: 



2

 

Time Complexity: O(N2).
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :