Related Articles

# Find minimum possible digit sum after adding a number d

• Last Updated : 22 Jun, 2021

Given a number n and a number d, we can add d to n as many times ( even 0 is possible ). The task is to find the minimum possible digit sum we can achieve by performing above operation.
Digit Sum is defined as the sum of digits of a number recursively until it is less than 10.
Examples:

```Input: n = 2546, d = 124
Output: 1
2546 + 8*124 = 3538
DigitSum(3538)=1

Input: n = 123, d = 3
Output: 3```

Approach:

1. First observation here is to use %9 approach to find minimum possible digit sum of a number n. If modulo with 9 is 0 return 9 else return the remainder.
2. Second observation is, a+d*(9k+l) modulo 9 is equivalent to a+d*l modulo 9, therefore, the answer to the query will be available in either no addition or first 8 additions of d, after which the digit sum will repeat.

Below is the implementation of above approach:

## C++

 `// C++ implementation of above approach``#include ``using` `namespace` `std;` `// Function To find digitsum for a number``int` `digitsum(``int` `n)``{``    ``// Logic for digitsum``    ``int` `r = n % 9;``    ``if` `(r == 0)``        ``return` `9;``    ``else``        ``return` `r;``}` `// Function to find minimum digit sum``int` `find(``int` `n, ``int` `d)``{``    ``// Variable to store answer``    ``// Initialise by 10 as the answer``    ``// will always be less than 10``    ``int` `minimum = 10;`  `    ``// Values of digitsum will repeat after``    ``// i=8, due to modulo taken with 9``    ``for` `(``int` `i = 0; i < 9; i++) {``        ``int` `current = (n + i * d);``        ``minimum = min(minimum, digitsum(current));``    ``}` `    ``return` `minimum;``}` `// Driver Code``int` `main()``{``    ``int` `n = 2546, d = 124;``    ``cout << ``"Minimum possible digitsum is :"``         ``<< find(n, d);` `    ``return` `0;``}`

## Java

 `// Java implementation of above approach``import` `java.io.*;``public` `class` `gfg``{``    ``// Function To find digitsum for a number``public` `int` `digitsum(``int` `n)``{``    ``// Logic for digitsum``    ``int` `r = n % ``9``;``    ``if` `(r == ``0``)``        ``return` `9``;``    ``else``        ``return` `r;``}` `// Function to find minimum digit sum``public` `int` `find(``int` `n, ``int` `d)``{``    ``// Variable to store answer``    ``// Initialise by 10 as the answer``    ``// will always be less than 10``    ``int` `minimum = ``10``;`  `    ``// Values of digitsum will repeat after``    ``// i=8, due to modulo taken with 9``    ``for` `(``int` `i = ``0``; i < ``9``; i++) {``        ``int` `current = (n + i * d);``        ``minimum = Math.min(minimum, digitsum(current));``    ``}` `    ``return` `minimum;``}``}` `class` `geek``{``// Driver Code``public` `static` `void` `main(String[]args)``{``    ``gfg g = ``new` `gfg();``    ``int` `n = ``2546``, d = ``124``;``    ``System.out.println(``"Minimum possible digitsum is : "``+ (g.find(n, d)));``}``}``//This code is contributed by shs..`

## Python3

 `# Python3 implementation of``# above approach` `# Function To find digitsum``# for a number``def` `digitsum(n):` `    ``# Logic for digitsum``    ``r ``=` `n ``%` `9``;``    ``if` `(r ``=``=` `0``):``        ``return` `9``;``    ``else``:``        ``return` `r;` `# Function to find minimum digit sum``def` `find(n, d):` `    ``# Variable to store answer``    ``# Initialise by 10 as the answer``    ``# will always be less than 10``    ``minimum ``=` `10``;` `    ``# Values of digitsum will``    ``# repeat after i=8, due to``    ``# modulo taken with 9``    ``for` `i ``in` `range``(``9``):` `        ``current ``=` `(n ``+` `i ``*` `d);``        ``minimum ``=` `min``(minimum,``                      ``digitsum(current));` `    ``return` `minimum;` `# Driver Code``n ``=` `2546``;``d ``=` `124``;``print``(``"Minimum possible digitsum is :"``,``                           ``find(n, d));` `# This code is contributed by mits`

## C#

 `// C# implementation of above approach``using` `System;``public` `class` `gfg``{``    ``// Function To find digitsum for a number`` ``public` `int` `digitsum(``int` `n)`` ``{``    ``// Logic for digitsum``    ``int` `r = n % 9;``    ``if` `(r == 0)``        ``return` `9;``    ``else``        ``return` `r;`` ``}` `// Function to find minimum digit sum`` ``public` `int` `find(``int` `n, ``int` `d)`` ``{``    ``// Variable to store answer``    ``// Initialise by 10 as the answer``    ``// will always be less than 10``    ``int` `minimum = 10;`  `    ``// Values of digitsum will repeat after``    ``// i=8, due to modulo taken with 9``    ``for` `(``int` `i = 0; i < 9; i++) {``        ``int` `current = (n + i * d);``        ``minimum = Math.Min(minimum, digitsum(current));``    ``}` `    ``return` `minimum;`` ``}``}` `class` `geek``{``// Driver Code`` ``public` `static` `void` `Main()`` ``{``    ``gfg g = ``new` `gfg();``    ``int` `n = 2546, d = 124;``    ``Console.WriteLine(``"Minimum possible digitsum is : {0}"``, (g.find(n, d)));``    ``Console.Read();`` ``}``}``//This code is contributed by SoumikMondal`

## PHP

 ``

## Javascript

 ``
Output:
`Minimum possible digitsum is :1`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up