# Find minimum positive integer x such that a(x^2) + b(x) + c >= k

• Difficulty Level : Easy
• Last Updated : 03 Jun, 2021

Given four integers a, b, c and k. The task is to find the minimum positive value of x such that ax2 + bx + c ≥ k.
Examples:

Input: a = 3, b = 4, c = 5, k = 6
Output:
For x = 0, a * 0 + b * 0 + c = 5 < 6
For x = 1, a * 1 + b * 1 + c = 3 + 4 + 5 = 12 > 6
Input: a = 2, b = 7, c = 6, k = 3
Output:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: The idea is to use binary search. The lower limit for our search will be 0 since x has to be minimum positive integer.
Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to return the minimum positive``// integer satisfying the given equation``int` `MinimumX(``int` `a, ``int` `b, ``int` `c, ``int` `k)``{``    ``int` `x = INT_MAX;` `    ``if` `(k <= c)``        ``return` `0;` `    ``int` `h = k - c;``    ``int` `l = 0;` `    ``// Binary search to find the value of x``    ``while` `(l <= h) {``        ``int` `m = (l + h) / 2;``        ``if` `((a * m * m) + (b * m) > (k - c)) {``            ``x = min(x, m);``            ``h = m - 1;``        ``}``        ``else` `if` `((a * m * m) + (b * m) < (k - c))``            ``l = m + 1;``        ``else``            ``return` `m;``    ``}` `    ``// Return the answer``    ``return` `x;``}` `// Driver code``int` `main()``{``    ``int` `a = 3, b = 2, c = 4, k = 15;``    ``cout << MinimumX(a, b, c, k);` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``class` `GFG``{``    ` `// Function to return the minimum positive``// integer satisfying the given equation``static` `int` `MinimumX(``int` `a, ``int` `b, ``int` `c, ``int` `k)``{``    ``int` `x = Integer.MAX_VALUE;` `    ``if` `(k <= c)``        ``return` `0``;` `    ``int` `h = k - c;``    ``int` `l = ``0``;` `    ``// Binary search to find the value of x``    ``while` `(l <= h)``    ``{``        ``int` `m = (l + h) / ``2``;``        ``if` `((a * m * m) + (b * m) > (k - c))``        ``{``            ``x = Math.min(x, m);``            ``h = m - ``1``;``        ``}``        ``else` `if` `((a * m * m) + (b * m) < (k - c))``            ``l = m + ``1``;``        ``else``            ``return` `m;``    ``}` `    ``// Return the answer``    ``return` `x;``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `a = ``3``, b = ``2``, c = ``4``, k = ``15``;``    ``System.out.println(MinimumX(a, b, c, k));``}``}` `// This code is contributed by Code_Mech.`

## Python3

 `# Python3 implementation of the approach` `# Function to return the minimum positive``# integer satisfying the given equation``def` `MinimumX(a, b, c, k):` `    ``x ``=` `10``*``*``9` `    ``if` `(k <``=` `c):``        ``return` `0` `    ``h ``=` `k ``-` `c``    ``l ``=` `0` `    ``# Binary search to find the value of x``    ``while` `(l <``=` `h):``        ``m ``=` `(l ``+` `h) ``/``/` `2``        ``if` `((a ``*` `m ``*` `m) ``+` `(b ``*` `m) > (k ``-` `c)):``            ``x ``=` `min``(x, m)``            ``h ``=` `m ``-` `1` `        ``elif` `((a ``*` `m ``*` `m) ``+` `(b ``*` `m) < (k ``-` `c)):``            ``l ``=` `m ``+` `1``        ``else``:``            ``return` `m` `    ``# Return the answer``    ``return` `x` `# Driver code``a, b, c, k ``=` `3``, ``2``, ``4``, ``15``print``(MinimumX(a, b, c, k))` `# This code is contributed by mohit kumar`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `// Function to return the minimum positive``// integer satisfying the given equation``static` `int` `MinimumX(``int` `a, ``int` `b, ``int` `c, ``int` `k)``{``    ``int` `x = ``int``.MaxValue;` `    ``if` `(k <= c)``        ``return` `0;` `    ``int` `h = k - c;``    ``int` `l = 0;` `    ``// Binary search to find the value of x``    ``while` `(l <= h)``    ``{``        ``int` `m = (l + h) / 2;``        ``if` `((a * m * m) + (b * m) > (k - c))``        ``{``            ``x = Math.Min(x, m);``            ``h = m - 1;``        ``}``        ``else` `if` `((a * m * m) + (b * m) < (k - c))``            ``l = m + 1;``        ``else``            ``return` `m;``    ``}` `    ``// Return the answer``    ``return` `x;``}` `// Driver code``public` `static` `void` `Main()``{``    ``int` `a = 3, b = 2, c = 4, k = 15;``    ``Console.Write(MinimumX(a, b, c, k));``}``}` `// This code is contributed by Akanksha Rai`

## PHP

 ` (``\$k` `- ``\$c``))``        ``{``            ``\$x` `= min(``\$x``, ``\$m``);``            ``\$h` `= ``\$m` `- 1;``        ``}``        ``else` `if` `((``\$a` `* ``\$m` `* ``\$m``) +``                 ``(``\$b` `* ``\$m``) < (``\$k` `- ``\$c``))``            ``\$l` `= ``\$m` `+ 1;``        ``else``            ``return` `\$m``;``    ``}` `    ``// Return the answer``    ``return` `\$x``;``}` `// Driver code``\$a` `= 3; ``\$b` `= 2; ``\$c` `= 4; ``\$k` `= 15;` `echo` `MinimumX(``\$a``, ``\$b``, ``\$c``, ``\$k``);` `// This code is contributed by Ryuga``?>`

## Javascript

 ``
Output:
`2`

My Personal Notes arrow_drop_up