Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find minimum positive integer x such that a(x^2) + b(x) + c >= k

  • Difficulty Level : Easy
  • Last Updated : 03 Jun, 2021

Given four integers a, b, c and k. The task is to find the minimum positive value of x such that ax2 + bx + c ≥ k.
Examples: 
 

Input: a = 3, b = 4, c = 5, k = 6 
Output:
For x = 0, a * 0 + b * 0 + c = 5 < 6 
For x = 1, a * 1 + b * 1 + c = 3 + 4 + 5 = 12 > 6
Input: a = 2, b = 7, c = 6, k = 3 
Output:
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 

Approach: The idea is to use binary search. The lower limit for our search will be 0 since x has to be minimum positive integer.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the minimum positive
// integer satisfying the given equation
int MinimumX(int a, int b, int c, int k)
{
    int x = INT_MAX;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h) {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c)) {
            x = min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
int main()
{
    int a = 3, b = 2, c = 4, k = 15;
    cout << MinimumX(a, b, c, k);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
     
// Function to return the minimum positive
// integer satisfying the given equation
static int MinimumX(int a, int b, int c, int k)
{
    int x = Integer.MAX_VALUE;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h)
    {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
public static void main(String[] args)
{
    int a = 3, b = 2, c = 4, k = 15;
    System.out.println(MinimumX(a, b, c, k));
}
}
 
// This code is contributed by Code_Mech.

Python3




# Python3 implementation of the approach
 
# Function to return the minimum positive
# integer satisfying the given equation
def MinimumX(a, b, c, k):
 
    x = 10**9
 
    if (k <= c):
        return 0
 
    h = k - c
    l = 0
 
    # Binary search to find the value of x
    while (l <= h):
        m = (l + h) // 2
        if ((a * m * m) + (b * m) > (k - c)):
            x = min(x, m)
            h = m - 1
 
        elif ((a * m * m) + (b * m) < (k - c)):
            l = m + 1
        else:
            return m
 
    # Return the answer
    return x
 
# Driver code
a, b, c, k = 3, 2, 4, 15
print(MinimumX(a, b, c, k))
 
# This code is contributed by mohit kumar

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to return the minimum positive
// integer satisfying the given equation
static int MinimumX(int a, int b, int c, int k)
{
    int x = int.MaxValue;
 
    if (k <= c)
        return 0;
 
    int h = k - c;
    int l = 0;
 
    // Binary search to find the value of x
    while (l <= h)
    {
        int m = (l + h) / 2;
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.Min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
 
    // Return the answer
    return x;
}
 
// Driver code
public static void Main()
{
    int a = 3, b = 2, c = 4, k = 15;
    Console.Write(MinimumX(a, b, c, k));
}
}
 
// This code is contributed by Akanksha Rai

PHP




<?php
// PHP implementation of the approach
 
// Function to return the minimum positive
// integer satisfying the given equation
function MinimumX($a, $b, $c, $k)
{
    $x = PHP_INT_MAX;
 
    if ($k <= $c)
        return 0;
 
    $h = $k - $c;
    $l = 0;
 
    // Binary search to find the value of x
    while ($l <= $h)
    {
        $m = floor(($l + $h) / 2);
        if (($a * $m * $m) +
            ($b * $m) > ($k - $c))
        {
            $x = min($x, $m);
            $h = $m - 1;
        }
        else if (($a * $m * $m) +
                 ($b * $m) < ($k - $c))
            $l = $m + 1;
        else
            return $m;
    }
 
    // Return the answer
    return $x;
}
 
// Driver code
$a = 3; $b = 2; $c = 4; $k = 15;
 
echo MinimumX($a, $b, $c, $k);
 
// This code is contributed by Ryuga
?>

Javascript




<script>
// Javascript implementation of the approach
 
// Function to return the minimum positive
// integer satisfying the given equation
function MinimumX(a,b,c,k)
{
    let x = Number.MAX_VALUE;
   
    if (k <= c)
        return 0;
   
    let h = k - c;
    let l = 0;
   
    // Binary search to find the value of x
    while (l <= h)
    {
        let m = Math.floor((l + h) / 2);
        if ((a * m * m) + (b * m) > (k - c))
        {
            x = Math.min(x, m);
            h = m - 1;
        }
        else if ((a * m * m) + (b * m) < (k - c))
            l = m + 1;
        else
            return m;
    }
   
    // Return the answer
    return x;
}
 
// Driver code
let a = 3, b = 2, c = 4, k = 15;
document.write(MinimumX(a, b, c, k));
 
// This code is contributed by patel2127
</script>
Output: 
2

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!