Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Minimum number of subtract operation to make an array decreasing

  • Difficulty Level : Medium
  • Last Updated : 14 Apr, 2021

You are given a sequence of numbers arr[0], arr[1], …, arr[N – 1] and a positive integer K. In each operation, you may subtract K from any element of the array. You are required to find the minimum number of operations to make the given array decreasing.
An array arr[0], arr[1], ....., arr[N-1]  is called decreasing if arr[i] >= arr[i+1]  for each i: 0 <= i < N-1
 

Input : N = 4, K = 5, arr[] = {1, 1, 2, 3} 
Output : 3
Explanation : 
Since arr[1] == arr[0] so no subtraction is required for arr[1]. For arr[2], since arr[2] > arr[1] (2 > 1) so we have to subtract arr[2] by k and after the one subtraction value of arr[2] is -3 which is less than the value of arr[1], so number of subtraction required only 1 and now value of arr[2] has been updated by -3. 
Similarly for arr[3], since arr[3] > arr[2] (3 > -3) so for this we have to subtract arr[3] by k two times to make the value of arr[3] lesser than arr[2], the number of subtraction required 2 and the updated value of arr[3] is -7. Now count total number of subtraction /operation required by adding number of operation on each step and that is = 0+1+2 = 3. 
Input : N = 5, K = 2, arr[] = {5, 4, 3, 2, 1} 
Output : 0

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

 



Approach : 
 

1. Traverse each element of array from 1 to n-1.
2. Check if (arr[i] > arr[i-1]) then
    Find noOfSubtraction; 
     noOfSubtraction = (arr[i] - arr[i-1]) / k
If ( (arr[i] - arr[i-1]) % k == 0 )
then noOfSubtraction++
Modify arr[i]; 
arr[i] = arr[i] - ( k * noOfSubtraction )

Below is implementation of above approach : 
 

CPP




// CPP program to make an array decreasing
#include <bits/stdc++.h>
using namespace std;
 
// Function to count minimum no of operation
int min_noOf_operation(int arr[], int n, int k)
{
    int noOfSubtraction;
    int res = 0;
    for (int i = 1; i < n; i++) {
        noOfSubtraction = 0;
 
        if (arr[i] > arr[i - 1]) {
 
            // Count how many times we have to subtract.
            noOfSubtraction = (arr[i] - arr[i - 1]) / k;
 
            // Check an additional subtraction is
            // required or not.
            if ((arr[i] - arr[i - 1]) % k != 0)
                noOfSubtraction++;
 
            // Modify the value of arr[i].
            arr[i] = arr[i] - k * noOfSubtraction;
        }
 
        // Count total no of operation/subtraction .
        res = res + noOfSubtraction;
    }
 
    return res;
}
 
// Driver Code
int main()
{
    int arr[] = { 1, 1, 2, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int k = 5;
    cout << min_noOf_operation(arr, N, k) << endl;
    return 0;
}

Java




// Java program to make an
// array decreasing
import java.util.*;
import java.lang.*;
 
public class GfG{
     
    // Function to count minimum no of operation
    public static int min_noOf_operation(int arr[],
                                      int n, int k)
    {
        int noOfSubtraction;
        int res = 0;
         
        for (int i = 1; i < n; i++) {
            noOfSubtraction = 0;
 
            if (arr[i] > arr[i - 1]) {
     
                // Count how many times
                // we have to subtract.
                noOfSubtraction = (arr[i] - arr[i - 1]) / k;
 
                // Check an additional subtraction
                // is required or not.
                if ((arr[i] - arr[i - 1]) % k != 0)
                    noOfSubtraction++;
 
                // Modify the value of arr[i]
                arr[i] = arr[i] - k * noOfSubtraction;
            }
 
            // Count total no of subtraction
            res = res + noOfSubtraction;
        }
 
        return res;
    }
     
    // driver function
    public static void main(String argc[]){
        int arr = { 1, 1, 2, 3 };
        int N = 4;
        int k = 5;
        System.out.println(min_noOf_operation(arr,
                                           N, k));
    }
     
}
 
/* This code is contributed by Sagar Shukla */

Python3




# Python program to make an array decreasing
 
# Function to count minimum no of operation
def min_noOf_operation(arr, n, k):
 
    res = 0
    for i in range(1,n):
        noOfSubtraction = 0
 
        if (arr[i] > arr[i - 1]):
 
            # Count how many times we have to subtract.
            noOfSubtraction = (arr[i] - arr[i - 1]) / k;
 
            # Check an additional subtraction is
            # required or not.
            if ((arr[i] - arr[i - 1]) % k != 0):
                noOfSubtraction+=1
 
            # Modify the value of arr[i].
            arr[i] = arr[i] - k * noOfSubtraction
         
 
        # Count total no of operation/subtraction .
        res = res + noOfSubtraction
     
 
    return int(res)
 
 
# Driver Code
arr = [ 1, 1, 2, 3 ]
N = len(arr)
k = 5
print(min_noOf_operation(arr, N, k))
 
# This code is contributed by
# Smitha Dinesh Semwal

C#




// C# program to make an
// array decreasing
using System;
 
public class GfG{
     
    // Function to count minimum no of operation
    public static int min_noOf_operation(int []arr,
                                       int n, int k)
    {
        int noOfSubtraction;
        int res = 0;
         
        for (int i = 1; i < n; i++) {
            noOfSubtraction = 0;
 
            if (arr[i] > arr[i - 1]) {
     
                // Count how many times
                // we have to subtract.
                noOfSubtraction = (arr[i] - arr[i - 1]) / k;
 
                // Check an additional subtraction
                // is required or not.
                if ((arr[i] - arr[i - 1]) % k != 0)
                    noOfSubtraction++;
 
                // Modify the value of arr[i]
                arr[i] = arr[i] - k * noOfSubtraction;
            }
 
            // Count total no of subtraction
            res = res + noOfSubtraction;
        }
 
        return res;
    }
     
    // driver function
    public static void Main()
    {
        int []arr = { 1, 1, 2, 3 };
        int N = 4;
        int k = 5;
        Console.WriteLine(min_noOf_operation(arr,
                                        N, k));
    }
     
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to make an array decreasing
 
// Function to count minimum no of operation
function min_noOf_operation($arr, $n, $k)
{
     
    $noOfSubtraction;
    $res = 0;
    for($i = 1; $i < $n; $i++)
    {
        $noOfSubtraction = 0;
 
        if ($arr[$i] > $arr[$i - 1])
        {
 
            // Count how many times we
            // have to subtract.
            $noOfSubtraction = ($arr[$i] -
                      $arr[$i - 1]) / $k;
 
            // Check an additional subtraction
            // is required or not.
            if (($arr[$i] - $arr[$i - 1])
                               % $k != 0)
                $noOfSubtraction++;
 
            // Modify the value of arr[i].
            $arr[$i] = $arr[$i] - $k *
                      $noOfSubtraction;
        }
 
        // Count total no of
        // operation/subtraction .
        $res = $res + $noOfSubtraction;
    }
 
    return floor($res);
}
 
    // Driver Code
    $arr = array(1, 1, 2, 3);
    $N = count($arr);
    $k = 5;
    echo min_noOf_operation($arr, $N, $k) ;
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to make an
// array decreasing
 
    // Function to count minimum no of operation
    function min_noOf_operation(arr, n, k)
    {
        let noOfSubtraction;
        let res = 0;
           
        for (let i = 1; i < n; i++)
        {
            noOfSubtraction = 0;
   
            if (arr[i] > arr[i - 1])
            {
       
                // Count how many times
                // we have to subtract.
                noOfSubtraction = (arr[i] - arr[i - 1]) / k;
   
                // Check an additional subtraction
                // is required or not.
                if ((arr[i] - arr[i - 1]) % k != 0)
                    noOfSubtraction++;
   
                // Modify the value of arr[i]
                arr[i] = arr[i] - k * noOfSubtraction;
            }
   
            // Count total no of subtraction
            res = res + noOfSubtraction;
        }
        return res;
    }
 
// Driver code   
        let arr = [ 1, 1, 2, 3 ];
        let N = 4;
        let k = 5;
        document.write(Math.floor(min_noOf_operation(arr,
                                           N, k)));
                                            
       // This code is contributed by code_hunt.              
</script>

Output : 
 

 3

Time Complexity : O(N).
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :