Minimum number of subtract operation to make an array decreasing

You are given a sequence of numbers arr[0], arr[1], …, arr[N – 1] and a positive integer K. In each operation, you may subtract K from any element of the array. You are required to find the minimum number of operations to make the given array decreasing.


An array arr[0], arr[1], ....., arr[N-1] is called decreasing if arr[i] >= arr[i+1] for each i: 0 <= i < N-1.

Input : N = 4, K = 5, arr[] = {1, 1, 2, 3}
Output : 3

Explanation :
Since arr[1] == arr[0] so no subtraction is required for arr[1]. For arr[2], since arr[2] > arr[1] (2 > 1) so we have to subtract arr[2] by k and after the one subtraction value of arr[2] is -3 which is less than the value of arr[1], so number of subtraction required only 1 and now value of arr[2] has been updated by -3.
Similarly for arr[3], since arr[3] > arr[2] (3 > -3) so for this we have to subtract arr[3] by k two times to make the value of arr[3] lesser than arr[2], the number of subtraction required 2 and the updated value of arr[3] is -7. Now count total number of subtraction /operation required by adding number of operation on each step and that is = 0+1+2 = 3.

Input : N = 5, K = 2, arr[] = {5, 4, 3, 2, 1}
Output : 0



Approach :

1. Traverse each element of array from 1 to n-1.
2. Check if (arr[i] > arr[i-1]) then
    Find noOfSubtraction; 
     noOfSubtraction = (arr[i] - arr[i-1]) / k 

   If ( (arr[i] - arr[i-1]) % k == 0 )
     then noOfSubtraction++

   Modify arr[i]; 
     arr[i] = arr[i] - ( k * noOfSubtraction )

Below is implementation of above approach :

CPP

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to make an array decreasing
#include <iostream>
using namespace std;
  
// Function to count minimum no of operation
int min_noOf_operation(int arr[], int n, int k)
{
    int noOfSubtraction;
    int res = 0;
    for (int i = 1; i < n; i++) {
        noOfSubtraction = 0;
  
        if (arr[i] > arr[i - 1]) {
  
            // Count how many times we have to subtract.
            noOfSubtraction = (arr[i] - arr[i - 1]) / k;
  
            // Check an additional subtraction is 
            // required or not.
            if ((arr[i] - arr[i - 1]) % k != 0)
                noOfSubtraction++;
  
            // Modify the value of arr[i].
            arr[i] = arr[i] - k * noOfSubtraction;
        }
  
        // Count total no of operation/subtraction .
        res = res + noOfSubtraction;
    }
  
    return res;
}
  
// Driver Code
int main()
{
    int arr[] = { 1, 1, 2, 3 };
    int N = sizeof(arr) / sizeof(arr[0]);
    int k = 5;
    cout << min_noOf_operation(arr, N, k) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to make an
// array decreasing
import java.util.*;
import java.lang.*;
  
public class GfG{
      
    // Function to count minimum no of operation
    public static int min_noOf_operation(int arr[], 
                                      int n, int k)
    {
        int noOfSubtraction;
        int res = 0;
          
        for (int i = 1; i < n; i++) {
            noOfSubtraction = 0;
  
            if (arr[i] > arr[i - 1]) {
      
                // Count how many times 
                // we have to subtract.
                noOfSubtraction = (arr[i] - arr[i - 1]) / k;
  
                // Check an additional subtraction 
                // is required or not.
                if ((arr[i] - arr[i - 1]) % k != 0)
                    noOfSubtraction++;
  
                // Modify the value of arr[i]
                arr[i] = arr[i] - k * noOfSubtraction;
            }
  
            // Count total no of subtraction
            res = res + noOfSubtraction;
        }
  
        return res;
    }
      
    // driver function
    public static void main(String argc[]){
        int arr = { 1, 1, 2, 3 };
        int N = 4;
        int k = 5;
        System.out.println(min_noOf_operation(arr,
                                           N, k)); 
    }
      
}
  
/* This code is contributed by Sagar Shukla */

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to make an array decreasing
  
# Function to count minimum no of operation
def min_noOf_operation(arr, n, k):
  
    res = 0
    for i in range(1,n):
        noOfSubtraction = 0
  
        if (arr[i] > arr[i - 1]):
  
            # Count how many times we have to subtract.
            noOfSubtraction = (arr[i] - arr[i - 1]) / k;
  
            # Check an additional subtraction is 
            # required or not.
            if ((arr[i] - arr[i - 1]) % k != 0):
                noOfSubtraction+=1
  
            # Modify the value of arr[i].
            arr[i] = arr[i] - k * noOfSubtraction
          
  
        # Count total no of operation/subtraction .
        res = res + noOfSubtraction
      
  
    return int(res)
  
  
# Driver Code
arr = [ 1, 1, 2, 3 ]
N = len(arr)
k = 5
print(min_noOf_operation(arr, N, k))
  
# This code is contributed by
# Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to make an
// array decreasing
using System;
  
public class GfG{
      
    // Function to count minimum no of operation
    public static int min_noOf_operation(int []arr, 
                                       int n, int k)
    {
        int noOfSubtraction;
        int res = 0;
          
        for (int i = 1; i < n; i++) {
            noOfSubtraction = 0;
  
            if (arr[i] > arr[i - 1]) {
      
                // Count how many times 
                // we have to subtract.
                noOfSubtraction = (arr[i] - arr[i - 1]) / k;
  
                // Check an additional subtraction 
                // is required or not.
                if ((arr[i] - arr[i - 1]) % k != 0)
                    noOfSubtraction++;
  
                // Modify the value of arr[i]
                arr[i] = arr[i] - k * noOfSubtraction;
            }
  
            // Count total no of subtraction
            res = res + noOfSubtraction;
        }
  
        return res;
    }
      
    // driver function
    public static void Main()
    {
        int []arr = { 1, 1, 2, 3 };
        int N = 4;
        int k = 5;
        Console.WriteLine(min_noOf_operation(arr,
                                        N, k)); 
    }
      
}
  
// This code is contributed by vt_m 

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to make an array decreasing
  
// Function to count minimum no of operation
function min_noOf_operation($arr, $n, $k)
{
      
    $noOfSubtraction;
    $res = 0;
    for($i = 1; $i < $n; $i++) 
    {
        $noOfSubtraction = 0;
  
        if ($arr[$i] > $arr[$i - 1]) 
        {
  
            // Count how many times we
            // have to subtract.
            $noOfSubtraction = ($arr[$i] - 
                      $arr[$i - 1]) / $k;
  
            // Check an additional subtraction 
            // is required or not.
            if (($arr[$i] - $arr[$i - 1]) 
                               % $k != 0)
                $noOfSubtraction++;
  
            // Modify the value of arr[i].
            $arr[$i] = $arr[$i] - $k
                      $noOfSubtraction;
        }
  
        // Count total no of 
        // operation/subtraction .
        $res = $res + $noOfSubtraction;
    }
  
    return floor($res);
}
  
    // Driver Code
    $arr = array(1, 1, 2, 3);
    $N = count($arr);
    $k = 5;
    echo min_noOf_operation($arr, $N, $k) ;
  
// This code is contributed by anuj_67.
?>

chevron_right



Output :

 3

Time Complexity : O(N).



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : vt_m



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.