Skip to content
Related Articles
Open in App
Not now

Related Articles

Find minimum number of non palindromic partition of Binary Array

Improve Article
Save Article
  • Last Updated : 19 Dec, 2022
Improve Article
Save Article

Given a binary array A[] of length 2*N, the task is to find the minimum number of partitions that follow the below conditions:

  • Each array element belongs to exactly one partition
  • None of the partitioned subarrays is a palindrome

Note: If there are multiple answers print anyone that satisfies the above conditions and if no such partition exists that satisfies the above condition then print -1.

Examples:

Input: A[] = {1, 0, 1, 1, 0, 1} 
Output: 2

Explanation: One of the valid partitions of A = {1, 0, 1, 1, 0, 1} is {1, 0} and {1, 1, 0, 1} which satisfy above conditions.Hence we can partition an array into 2 subarrays.

Input: A[] = {1, 0, 0, 1, 0, 0, 1, 1}
Output: 1
Explanation: Here A = {1, 0, 0, 1, 0, 0, 1, 1} is itself not a palindrome. Then, no more partitioning needs to be done: just take A itself. Hence number of partitions of an array is 1.

Approach: The problem can be solved based on the following observation: 

  • A trivial impossible case is when an array A consists of only 0’s or only 1’s as an element and print -1.
  • In every other case, a valid partition exists and only 2 partitions are sufficient.
    • Suppose A is itself not a palindrome. Then, no more partitioning needs to be done: just take A itself.
    • Now we consider the case when A is a palindrome. Note that the length of A is even.
      • Suppose the first half of A is not a palindrome. Then, its second half is also not a palindrome, so simply partition it into these two halves.
      • Otherwise, the first N elements of A form a palindrome. In this case, consider the string formed by the first N+1 elements of A: this is definitely not a palindrome.

Follow the below steps to solve the problem:

  • Check whether an array is a palindrome or not and if the array is not a palindrome then print 1.
  • After that check whether array A[] consists of only 0’s or only 1’s as an element and if it is true then print -1.
  • Otherwise, print 2 as an answer for the number of partitions of an array that satisfy conditions.

Below is the implementation of the above approach.

C++

// C++ code to implement the approach
#include <bits/stdc++.h>
using namespace std;

// Function to check if the array is palindrome
bool isPalindrome(int arr[], int n)
{
  int flag = 0;

  // Loop till array size n/2.
  for (int i = 0; i <= n / 2 && n != 0; i++) {

    if (arr[i] != arr[n - i - 1]) {
      flag = 1;
      break;
    }
  }

  if (flag == 1)
    return false;
  else
    return true;
}

// Function to find number of
// partitions of an array
void numOfPartition(int arr[], int n)
{
  if (!isPalindrome(arr, n)) {
    cout << 1;
  }
  else {
    int k = 0, z = 0;
    for (int i = 0; i < n; i++) {
      if (arr[i] == 0)
        z++;
      else
        k++;
    }
    if (k == 0 || z == 0) {
      cout << -1;
    }
    else {
      cout << 2;
    }
  }
}

// Driver Code
int main()
{
  int A[] = { 1, 0, 1, 1, 0, 1 };
  int N = sizeof(A) / sizeof(A[0]);

  // Function call
  numOfPartition(A, N);

  return 0;
}

// This code is contributed by aarohirai2616.

Java

// Java code to implement the approach

import java.io.*;
import java.util.*;

public class GFG {

    // Function to find number of
    // partitions of an array
    public static void numOfPartition(int arr[], int n)
    {
        if (!isPalindrome(arr, n)) {
            System.out.println(1);
        }
        else {
            int k = 0, z = 0;
            for (int i = 0; i < n; i++) {
                if (arr[i] == 0)
                    z++;
                else
                    k++;
            }
            if (k == 0 || z == 0) {
                System.out.println(-1);
            }
            else {
                System.out.println(2);
            }
        }
    }

    // Function to check if the array is palindrome
    static boolean isPalindrome(int arr[], int n)
    {
        int flag = 0;

        // Loop till array size n/2.
        for (int i = 0; i <= n / 2 && n != 0; i++) {

            if (arr[i] != arr[n - i - 1]) {
                flag = 1;
                break;
            }
        }

        if (flag == 1)
            return false;
        else
            return true;
    }

    // Driver Code
    public static void main(String[] args)
    {
        int[] A = { 1, 0, 1, 1, 0, 1 };
        int N = A.length;

        // Function Call
        numOfPartition(A, N);
    }
}

Python

# Python code to implement the approach

# Function to check if the array is palindrome
def isPalindrome(arr, n):

    flag = 0

    # Loop till array size n/2.
    i = 0
    while(i <= n // 2 and n != 0):

        if (arr[i] != arr[n - i - 1]):
            flag = 1
            break

        i += 1

    if (flag == 1):
        return False
    else:
        return True

# Function to find number of
# partitions of an array
def numOfPartition(arr, n):

    if (isPalindrome(arr, n) == False):
        print(1)
    else:
        k = 0
        z = 0
        for i in range(0, n):
            if (arr[i] == 0):
                z += 1
            else:
                k += 1
        if (k == 0 or z == 0):
            print(-1)

        else:
            print(2)

# Driver Code
A = [1, 0, 1, 1, 0, 1]
N = len(A)

# Function call
numOfPartition(A, N)

# This code is contributed by Samim Hossain Mondal.

C#

// C# code to implement the approach

using System;

public class GFG {

    // Function to find number of
    // partitions of an array
    public static void numOfPartition(int[] arr, int n)
    {
        if (!isPalindrome(arr, n)) {
            Console.WriteLine(1);
        }
        else {
            int k = 0, z = 0;
            for (int i = 0; i < n; i++) {
                if (arr[i] == 0)
                    z++;
                else
                    k++;
            }
            if (k == 0 || z == 0) {
                Console.WriteLine(-1);
            }
            else {
                Console.WriteLine(2);
            }
        }
    }

    // Function to check if the array is palindrome
    static bool isPalindrome(int[] arr, int n)
    {
        int flag = 0;

        // Loop till array size n/2.
        for (int i = 0; i <= n / 2 && n != 0; i++) {

            if (arr[i] != arr[n - i - 1]) {
                flag = 1;
                break;
            }
        }

        if (flag == 1)
            return false;
        else
            return true;
    }

    static public void Main()
    {

        // Code
        int[] A = { 1, 0, 1, 1, 0, 1 };
        int N = A.Length;

        // Function Call
        numOfPartition(A, N);
    }
}

// This code is contributed by lokesh

Javascript

    // Javascript code to implement the approach
    
    // Function to check if the array is palindrome
    function isPalindrome(arr, n)
    {
    let flag = 0;
    
    // Loop till array size n/2.
    for (let i = 0; i <= n / 2 && n != 0; i++) {
    
        if (arr[i] != arr[n - i - 1]) {
        flag = 1;
        break;
        }
    }
    
    if (flag == 1)
        return false;
    else
        return true;
    }
    
    // Function to find number of
    // partitions of an array
    function numOfPartition(arr, n)
    {
    if (!isPalindrome(arr, n)) {
        console.log("1");
    }
    else {
        let k = 0, z = 0;
        for (let i = 0; i < n; i++) {
        if (arr[i] == 0)
            z++;
        else
            k++;
        }
        if (k == 0 || z == 0) {
        console.log("-1");
        }
        else {
        console.log("2");
        }
    }
    }
    
    // Driver Code
    
    let A = [ 1, 0, 1, 1, 0, 1 ];
    let N = A.length;
    
    // Function call
    numOfPartition(A, N);
    
    // This code is contributed by Pushpesh Raj.
    
Output

2

Time Complexity: O(N)
Auxiliary Space: O(1)

My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!