Find minimum number to be divided to make a number a perfect square

Given a positive integer n. Find the minimum number which divide n to make it a perfect square.

Examples:

Input : n = 50
Output : 2
By Dividing n by 2, we get which is a perfect square.

Input : n = 6
Output : 6
By Dividing n by 6, we get which is a perfect square.

Input : n = 36
Output : 1



A number is perfect square if all prime factors appear even number of times. The idea is to find the prime factor of n and find each prime factor power. Now, find and multiply all the prime factor whose power is odd. The resultant of the multiplication is the answer.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find minimum number which divide n
// to make it a perfect square.
#include<bits/stdc++.h>
using namespace std;
  
// Return the minimum number to be divided to make
// n a perfect square.
int findMinNumber(int n)
{
    int count = 0, ans = 1;
  
    // Since 2 is only even prime, compute its
    // power seprately.
    while (n%2 == 0)
    {
        count++;
        n /= 2;
    }
  
    // If count is odd, it must be removed by dividing
    // n by prime number.
    if (count%2)
        ans *= 2;
  
    for (int i = 3; i <= sqrt(n); i += 2)
    {
        count = 0;
        while (n%i == 0)
        {
            count++;
            n /= i;
        }
  
        // If count is odd, it must be removed by
        // dividing n by prime number.
        if (count%2)
            ans *= i;
    }
  
    if (n > 2)
        ans *= n;
  
    return ans;
}
  
// Driven Program
int main()
{
    int n = 72;
    cout << findMinNumber(n) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find minimum number 
// which divide n to make it a perfect square.
  
class GFG
{
    // Return the minimum number to be 
    // divided to make n a perfect square.
    static int findMinNumber(int n)
    {
        int count = 0, ans = 1;
      
        // Since 2 is only even prime, 
        // compute its power seprately.
        while (n % 2 == 0)
        {
            count++;
            n /= 2;
        }
      
        // If count is odd, it must be removed by dividing
        // n by prime number.
        if (count % 2 == 1)
            ans *= 2;
      
        for (int i = 3; i <= Math.sqrt(n); i += 2)
        {
            count = 0;
            while (n % i == 0)
            {
                count++;
                n /= i;
            }
      
            // If count is odd, it must be removed by
            // dividing n by prime number.
            if (count % 2 == 1)
                ans *= i;
        }
      
        if (n > 2)
            ans *= n;
      
        return ans;
    }
  
    // Driver code
    public static void main (String[] args)
    {
        int n = 72;
        System.out.println(findMinNumber(n));
    }
}
  
// This code is contributed by Anant Agarwal.

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find 
# minimum number which 
# divide n to make it a 
# perfect square.
import math
  
# Return the minimum 
# number to be divided 
# to make n a perfect 
# square.
def findMinNumber(n):
    count = 0
    ans = 1
  
    # Since 2 is only 
    # even prime, compute 
    # its power seprately.
    while n % 2 == 0:
        count += 1
        n //= 2
  
    # If count is odd, 
    # it must be removed
    # by dividing n by 
    # prime number.
    if count % 2 is not 0:
        ans *= 2
  
    for i in range(3, (int)(math.sqrt(n)) + 1, 2):
        count = 0
        while n % i == 0:
            count += 1
            n //= i
  
        # If count is odd, it 
        # must be removed by 
        # dividing n by prime 
        # number.
        if count % 2 is not 0:
            ans *= i
  
    if n > 2:
        ans *= n
  
    return ans
  
# Driver Code
n = 72
print(findMinNumber(n))
  
# This code is contributed
# by Sanjit_Prasad.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find minimum 
// number which divide n to
// make it a perfect square.
using System;
  
class GFG
{
      
    // Return the minimum number
    // to be divided to make 
    // n a perfect square.
    static int findMinNumber(int n)
    {
        int count = 0, ans = 1;
      
        // Since 2 is only even prime, 
        // compute its power seprately.
        while (n % 2 == 0)
        {
            count++;
            n /= 2;
        }
      
        // If count is odd, it must 
        // be removed by dividing
        // n by prime number.
        if (count % 2 == 1)
            ans *= 2;
      
        for (int i = 3; i <= Math.Sqrt(n); 
                                  i += 2)
        {
            count = 0;
            while (n % i == 0)
            {
                count++;
                n /= i;
            }
      
            // If count is odd, it must 
            // be removed by dividing n
            // by prime number.
            if (count % 2 == 1)
                ans *= i;
        }
      
        if (n > 2)
            ans *= n;
      
        return ans;
    }
  
    // Driver code
    public static void Main ()
    {
        int n = 72;
        Console.WriteLine(findMinNumber(n));
    }
}
  
// This code is contributed by vt_m.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find minimum 
// number which divide n
// to make it a perfect square.
  
// Return the minimum number 
// to be divided to make
// n a perfect square.
function findMinNumber($n)
{
    $count = 0;
    $ans = 1;
  
    // Since 2 is only 
    // even prime, 
    // compute its
    // power seprately.
    while ($n % 2 == 0)
    {
        $count++;
        $n /= 2;
    }
  
    // If count is odd, 
    // it must be removed 
    // by dividing n by 
    // prime number.
    if ($count % 2)
        $ans *= 2;
  
    for ($i = 3; $i <= sqrt($n); $i += 2)
    {
        $count = 0;
        while ($n % $i == 0)
        {
            $count++;
            $n /= $i;
        }
  
        // If count is odd, 
        // it must be removed
        // by dividing n by 
        // prime number.
        if ($count % 2)
            $ans *= $i;
    }
  
    if ($n > 2)
        $ans *= $n;
  
    return $ans;
}
  
    // Driver Code
    $n = 72;
    echo findMinNumber($n), "\n";
      
// This code is contributed by ajit.
?>

chevron_right



Output:

2

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : vt_m, jit_t, Sanjit_Prasad